Wave propagation through a gap in a thin vertical wall in deep water
-
B. C. Das
findbablu10@gmail.com
-
Soumen De
sdeappmath@caluniv.ac.in
-
B. N. Mandal
bnm2006@rediffmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462019000300093Abstract
The problem of oblique scattering of surface water waves by a vertical wall with a gap submerged in infinitely deep water is re-investigated in this paper. It is formulated in terms of two first kind integral equations, one involving the difference of potential across the wetted part of the wall and the other involving the horizontal component of velocity across the gap. The integral equations are solved approximately using one-term Galerkin approximations involving constants multiplied by appropriate weight functions whose forms are dictated by the physics of the problem. This is in contrast with somewhat complicated but known solutions of corresponding deep water integral equations for the case of normal incidence, used earlier in the literature as one-term Galerkin approximation. Ultimately this leads to very closed (numerically) upper and lower bounds of the reflection and transmission coefficients so that their averages produce fairly accurate numerical estimates for these coefficients. Known numerical results for normal incidence and for a narrow gap obtained by other methods in the literature are recovered, thereby confirming the correctness of the method employed here.
Keywords
[2] P. Das, S. Banerjea, B. N. Mandal, Scattering of oblique waves by a thin vertical wall with a submerged gap, Arch. Mech.,, 48 (1996), 959-972.
[3] W. R. Dean, On the reflection of surface waves by a submerged plane barrier, Proc. Camb. Phil. Soc., 41 (1945), 231-238.
[4] D. V. Evans, C.A.N. Morris, The effect of a fixed vertical barrier on oblique incidence surface waves in deep water, J. Inst. Math. Applic., 9 (1972), 198-204.
[5] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products, London, Academic press, 1980.
[6] T. H. Havelock, Forced surface waves on water, Phil. Mag., 8 (1929), 569-576.
[7] B. N. Mandal, A note on the diffraction of water waves by a vertical wall with a narrow gap, Arch. Mech., 39 (1987), 269-273.
[8] B. N. Mandal, A. Chakrabarti, Water wave scattering by barrier, WIT Press, Southampton, UK, 2000.
[9] B. A. Packham, W. E. Williams, A note on the transmission of water waves through small apertures, J. Math. Anal. Appl., 10 (1972), 176-184.
[10] D. Porter, The transmission of surface waves through a gap in a vertical barrier, Proc. Camb. Phil. Soc., 71 (1972), 411-421.
[11] R. Roy, U. Basu, B. N. Mandal, Water wave scattering by a pair of thin vertical barriers with submerged gaps, J. Eng. Math., 105 (2017), 85-97.
[12] E. O. Tuck, Transmission of water waves through small apertures, J. Fluid Mech., 49 (1971), 65-74.
Most read articles by the same author(s)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- B. N. Mandal, Mridula Kanoria, Water Waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
Similar Articles
- Alexander Fabricant, Nikolai Kutev, Tsviatko Rangelov, On the first eigenvalue for linear second order elliptic equations in divergence form , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- William Dimbour, Jean-Claude Mado, S-asymptotically ω-periodic solution for a nonlinear differential equation with piecewise constant argument in a Banach space , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Abdelouaheb Ardjouni, Ahcene Djoudi, Study of global asymptotic stability in nonlinear neutral dynamic equations on time scales , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- C.M. Kirk, A Localized Heat Source Undergoing Periodic Motion: Analysis of Blow-Up and a Numerical Solution , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Abdelhai Elazzouzi, Khalil Ezzinbi, Mohammed Kriche, On the periodic solutions for some retarded partial differential equations by the use of semi-Fredholm operators , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- George A. Anastassiou, A New Expansion Formula , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











