Level sets regularization with application to optimization problems
-
Moussa Barro
mousbarro@yahoo.fr
-
Sado Traoré
traore.sado@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000100137Abstract
Given a coupling function \(c\) and a non empty subset of â„, we define a closure operator. We are interested in extended real-valued functions whose sub-level sets are closed for this operator. Since this class of functions is closed under pointwise suprema, we introduce a regularization for extended real-valued functions. By decomposition of the closure operator using polarity scheme, we recover the regularization by bi-conjugation. We apply our results to derive a strong duality for a minimization problem.
Keywords
Crouzeix, J-P.: Contributions à ` l‘étude des fonctions quasiconvexes. Thesis. University of Clermont-Ferrand, France (1977).
Dolecki, S. and Kurcyusz, S.: On Φ-convexity in extremal problems. SIAM J. Control Optim. 16, 277–300 (1978).
Elias, L. M. and Martínez-Legaz, J.E.: A simplified conjugation scheme for lower semi-continuous functions. Optimization, 65(4):751–763 (2016).
Fenchel, W.: A remark on convex sets and polarity. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 82–89 (1952).
Flores-Bazán, F.: On a notion of subdifferentiability for non-convex functions. Optimization, 33(1):1–8 (1995).
Guillaume, S. and Volle, M.: Level set relaxation, epigraphical relaxation and conditioning in optimization. Positivity, 19:769–795 (2015).
Martínez-Legaz, J.: Generalized Convex Duality and its Economic Applications. Non-convex Optimization and Its Application, Handbook of generalized convexity and generalized mono- tonicity. Springer, New York, (2005).
Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl., 49: pp. 109–154 (1970).
Penot, J.P.: What is quasiconvex analysis? Optimization, 47: pp. 35–110, (2000).
Penot, J.P.: Conjugacies adapted to lower semicontinuous functions. Optimization, 64(3): pp. 473– 494 (2015).
Penot, J.P. and Volle, M.: On quasi-convex duality. Math. Oper. Res, 15: pp. 4597–625, (1990).
Penot, J.P. and Volle,M.: Surrogate programming and multipliers in quasi-convex programming. SIAM J. Control Optim, 42(6): pp. 1994–2003, (2004).
Rockafellar, R.T.: Conjugate Duality and optimization, SIAM (1974).
Rubinov, A.: Abstract Convexity and Global Optimization. Non-convex Optimization and Its Application. Springer US, (2000).
Singer, I.: Abstract convex analysis. Canadian Mathematics Series of Monographs and Texts. A wiley Interscience,(1997).
Volle, M.: Conjugaison par tranches. Annali di Matematica pura ed applicata, CXXXIX(IV): pp. 279–312, (1985).
Volle, M.: Conjugaison par tranche et dualit Ìe de toland. Optimization, 18(5): pp. 633–642 (1987).
Most read articles by the same author(s)
- Moussa Barro, Aboudramane Guiro, Dramane Ouedraogo, Optimal control of a SIR epidemic model with general incidence function and a time delays , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
Similar Articles
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- M. Mohammed Abdul Khayyoom, Characterization of Upper Detour Monophonic Domination Number , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Abdi Oli, Kelelaw Tilahun, G. V. Reddy, The Multivariable Aleph-function involving the Generalized Mellin-Barnes Contour Integrals , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
<< < 10 11 12 13 14 15 16 17 18 > >>
You may also start an advanced similarity search for this article.