Topological algebras with subadditive boundedness radius
-
M. Sabet
sabet.majid@gmail.com
-
R. G. Sanati
reza_sanaaty@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000300289Abstract
Let \(A\) be a topological algebra and \(\beta\) a subadditive boundedness radius on \(A\). In this paper we show that \(\beta\) is, under certain conditions, automatically submultiplicative. Then we apply this fact to prove that the spectrum of any element of \(A\) is non-empty. Finally, in the case when \(A\) is a normed algebra, we compare the initial normed topology with the normed topology \(\tau_{\beta}\), induced by \(\beta\) on \(A\), where \(\beta^{-1} (0)=0\).
Keywords
G. R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc. (3) vol. 15, pp. 399–421, 1965.
T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo, vol. 18, pp. 588– 594, 1942.
E. Ansari-Piri, M. Sabet and S. Sharifi, A class of complete metrizable Q-algebras, Sci. Stud. Res. Ser. Math. Inform. vol. 26, no. 1, pp. 17–24, 2016.
S. J. Bhatt, A seminorm with square property on a Banach algebra is submultiplicative, Proc. Amer. Math. Soc. vol. 117, no. 2, pp. 435–438, 1993.
F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, New York, 1973.
H. V. Dedania, A seminorm with square property is automatically submultiplicative, Proc. Indian Acad. Sci. Math. Sci. vol. 108 1998, no. 1, pp. 51–53, 1998.
T. Husain, Multiplicative functionals on topological algebras, Research Notes in Mathematics, 85, Pitman (Advanced Publishing Program), Boston, MA, 1983.
A. El Kinani, L. Oubbi and M. Oudadess, Spectral and boundedness radii in locally convex algebras, Georgian Math. J. vol. 5, no. 3, pp. 233–241, 1998.
A. Mallios, Topological algebras. Selected topics, North-Holland Mathematics Studies, 124, North-Holland Publishing Co., Amsterdam, 1986.
G. J. Murphy, C∗-algebras and operator theory, North-Holland. 1990.
L. Oubbi, Further radii in topological algebras, Bull. Belg. Math. Soc. Simon Stevin vol. 9, no. 2, pp. 279–292, 2002.
W. Zélazko, On the locally bounded and m-convex topological algebras, Studia Math. vol. 19, pp. 333–356, 1960.
Similar Articles
- Fred Brackx, Hennie De Schepper, Frank Sommen, Liesbet Van de Voorde, Discrete Clifford analysis: an overview , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Dan Archdeacon, A picture is worth a thousand words: topological graph theory , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- V. Renukadevi, On subsets of ideal topological spaces , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Bruno De Malafosse, Vladimir RakoÄević, Calculations in new sequence spaces and application to statistical convergence , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Consuelo Martinez, Algebra no conmutativa: Del finito al Infinito , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Bach Do, G. Stacey Staples, Zeros of cubic polynomials in zeon algebra , CUBO, A Mathematical Journal: In Press
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Carlos Lizama, Una Introducción a Teoría Espectral de Operadores , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Paul M. Cohn, The Weyl algebra and its field of fractions , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Paolo Piccione, Daniel V. Tausk, Topological Methods for ODE's: Symplectic Differential Systems , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.











