Characterization of Upper Detour Monophonic Domination Number
-
M. Mohammed Abdul Khayyoom
khayyoom.m@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000300315Abstract
This paper introduces the concept of upper detour monophonic domination number of a graph. For a connected graph \( G \) with vertex set \( V(G) \), a set \( M\subseteq V(G) \) is called minimal detour monophonic dominating set, if no proper subset of \( M \) is a detour monophonic dominating set. The maximum cardinality among all minimal monophonic dominating sets is called upper detour monophonic domination number and is denoted by \( \gamma_{dm}^+(G) \). For any two positive integers \( p \) and \( q \) with \( 2 \leq p \leq q \) there is a connected graph \( G \) with \( \gamma_m (G) = \gamma_{dm}(G) = p \) and \( \gamma_{dm}^+(G)=q \). For any three positive integers \( p, q, r \) with \(2 < p < q < r\), there is a connected graph \( G \) with \( m(G) = p \), \( \gamma_{dm}(G) = q \) and \( \gamma_{dm}^+(G)= r \). Let \( p \) and \( q \) be two positive integers with \( 2 < p<q \) such that \( \gamma_{dm}(G) = p \) and \( \gamma_{dm}^+(G)= q \). Then there is a minimal DMD set whose cardinality lies between \( p \) and \( q \). Let \( p , q \) and \( r \) be any three positive integers with \( 2 \leq p \leq q \leq r\). Then, there exist a connected graph \( G \) such that \( \gamma_{dm}(G) = p , \gamma_{dm}^+(G)= q \) and \( \lvert V(G) \rvert = r\).
Keywords
P. A. P. Sudhahar, M. M. A. Khayyoom and A. Sadiquali, “Edge Monophonic Domination Number of Graphs”. J. Adv.in Mathematics, vol. 11, no. 10, pp. 5781–5785, 2016.
P. A. P. Sudhahar, M. M. A. Khayyoom and A. Sadiquali, “The Connected Edge Monophonic Domination Number of Graphs”. Int. J Comp.Applications, vol. 145, no. 12, pp. 18–21, 2016.
G. Chartrand and P. Zhang, Introduction to Graph Theory. MacGraw Hill, 2005.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundementals of Domination in Graphs. 208, Marcel Dekker Inc, New York, 1998.
J. Jhon and P. A. P. Sudhahar, “On The Edge Monophonic Number of a Graph Filomat”, vol. 26, no. 6, pp. 1081–1089, 2012.
J. Jhon and P.Arul Paul Sudhahar, “The Monophonic Domination Number of a Graph, Proceedings of the International Conference on Mathematics and Business Managment”, pp. 142–145, 2012.
M. M. A. Khayyoom and P. A. P. Sudhahar. “Edge Detour Monophonic Domination Number of a Graph. International Journal of Pure and Applied Mathematics”, vol. 120, no. 7, pp. 195–203, 2018.
M. M. A. Khayyoom and P. A. P. Sudhahar, “Connected Detour Monophonic Domination Number of a Graph”. Global Journal of Pure and Applied Mathematics, vol. 13, no. 5, pp. 241–249, 2017.
S. R. Chellathurai, and S. Padma Vijaya, “Upper Geodetic Domination Number of a Graph” Int. Journal of Cont. Math Sci., vol. 10, no. 1, pp. 23–36, 2015.
P. Titus, A. P. Santhakumaran, K. Ganesamoorthy, “Upper Detour Monophonic Number of a Graph”, Electronic Note in Discrete Mathematics, vol. 53, pp. 331–342, 2016.
Similar Articles
- L. Philo Nithya, Joseph Varghese Kureethara, Independent partial domination , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- M. I. Jinnah, Shine C. Mathew, Ideal based graph structures for commutative rings , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Edoardo Ballico, Curves in low dimensional projective spaces with the lowest ranks , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Bernard Helffer, Xing-Bin Pan, On Some Spectral Problems and Asymptotic Limits Occuring in the Analysis of Liquid Crystals , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Smaïl Djebali, Ouiza Saifi, Upper and lower solutions for φ−Laplacian third-order BVPs on the half-Line , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Shuichi Otake, Tony Shaska, Some remarks on the non-real roots of polynomials , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Anthony Sofo, Families of skew linear harmonic Euler sums involving some parameters , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
You may also start an advanced similarity search for this article.