Curves in low dimensional projective spaces with the lowest ranks
-
Edoardo Ballico
ballico@science.unitn.it
Downloads
DOI:
https://doi.org/10.4067/S0719-06462020000300379Abstract
Let \(X\subset {\mathbb P}^r\) be an integral and non-degenerate curve. For each \(q\in {\mathbb P}^r\) the \(X\)-rank \(r_X(q)\) of \(q\) is the minimal number of points of \(X\) spanning \(q\). A general point of \({\mathbb P}^r\) has \(X\)-rank \(\lceil (r+1)/2\rceil\). For \(r=3\) (resp. \(r=4\)) we construct many smooth curves such that \(r_X(q) \le 2\) (resp. \(r_X(q) \le 3\)) for all \(q\in {\mathbb P}^r\) (the best possible upper bound). We also construct nodal curves with the same properties and almost all geometric genera allowed by Castelnuovo's upper bound for the arithmetic genus.
Keywords
B. Adlandsvik, “Joins and higher secant varieties”, Math. Scand., vol. 62, pp. 213–222, 1987.
G. Blekherman, Z. Teitler, “On maximum, typical and generic ranks”, Math. Ann., vol. 362, no. 3-4, pp. 1231–1031, 2015.
J. Buczyn Ìski, K. Han, M. Mella, Z. Teitler, “On the locus of points of high rank”, Eur. J. Math., vol. 4, pp. 113–136, 2018.
I. V. Dolgachev, Classical algebraic geometry. A modern view, Cambridge University Press, Cambridge, 2012.
J. P. Griffiths, J. Harris, Principles of algebraic geometry, John Wiley & Sons, New York, 1978.
J. Harris (with D. Eisenbud): Curves in projective space, Les Presses de l‘Université de Montréal, Montréal, 1982.
R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin–Heidelberg–New York, 1977.
J. M. Landsberg, Z. Teitler, “On the ranks and border ranks of symmetric tensors,” Found. Comput. Math., vol. 10, pp. 339–366, 2010.
P. Piene, “Cuspidal projections of space curves”, Math. Ann., vol. 256, no. 1, pp. 95–119, 1981.
A. Tannenbaum, “Families of algebraic curves with nodes”, Composition Math., vol. 41, no. 1, pp. 107–126, 1980.
Most read articles by the same author(s)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Edoardo Ballico, A characterization of \(\mathbb F_q\)-linear subsets of affine spaces \(\mathbb F_{q^2}^n\) , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- M.K. Gupta, Rupen Pratap Singh, Connectedness in Fuzzy bitopological Spaces , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Maja Fosner, Benjamin Marcen, Nejc Sirovnik, On centralizers of standard operator algebras with involution , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- B. K. Tyagi, Sheetal Luthra, Harsh V. S. Chauhan, On New Types of Sets Via γ-open Sets in (ð‘Ž)Topological Spaces , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Mahmoud Benkhalifa, Note on the \(F_{0}\)-spaces , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.