Approximate solution of Abel integral equation in Daubechies wavelet basis
-
Jyotirmoy Mouley
jyoti87.cu.wavelet@gmail.com
-
M. M. Panja
madanpanja2005@yahoo.co.in
-
B. N. Mandal
bnm2006@rediffmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200245Abstract
This paper presents a new computational method for solving Abel integral equation (both first kind and second kind). The numerical scheme is based on approximations in Daubechies wavelet basis. The properties of Daubechies scale functions are employed to reduce an integral equation to the solution of a system of algebraic equations. The error analysis associated with the method is given. The method is illustrated with some examples and the present method works nicely for low resolution.
Keywords
S. B. Healy, J. Haase, O. Lesne, “Abel transform inversion of radio occulation measurement made with a receiver inside the earth‘s atmosphere”, Ann. Geophys., vol. 20, no. 8, pp. 1253- 1256, 2002.
R. N. Bracewell, A. C. Riddle, “Inversion of Fan-Beam scans in radio astronomy”, Astrophysical Journal, vol. 150, pp. 427-434, 1967.
Lj. M. Ignjatovic and A. A. Mihajlov, “The realization of Abel‘s inversion in the case of discharge with undetermined radius”, Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 72, no. 5, pp. 677-689, 2002.
S. De, B. N. Mandal and A. Chakrabarti, “Water wave scattering by two submerged plane vertical barriers–Abel integral-equation approach”, J. Eng. Math., vol. 65, no. 1, pp. 75-87, 2009.
J. Fourier, Théorie Analytique de la chaleur, Firmin Didot, United Kingdom: Cambridge University Press, ISBN 978-1-108-00180-9, 2009.
A. Graps, “An introduction to wavelets”, IEEE Computing in Science and Engineering, vol. 2, no.2, pp. 50-61, 1995.
A. Grossman and J. Morlet, “Decomposition of Hardy functions into square integrables wavelets of constant shape”, SIAM J. Math. Anal., vol. 15, no. 4, pp. 723-736, 1984.
P. G. Lamarie and Y. Meyer, “Ondelettes et bases hilbertiennes”, Rev. Mat. Iberoam., vol. 2, no. 1, pp. 1-18, 1986.
I. Daubechies, “Orthonormal bases of compactly supported wavelets”, Comm. Pure Appl. Math., vol. 41, no.7, pp. 909-996, 1988.
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Philadelphia, PA: SIAM, 1992.
G. Beylkin, R. Coifman and V. Rokhlin, “Fast wavelet transforms and numerical algorithms I”, Comm. Pure Appl. Math, vol. 44, no. 2, pp. 141-183, 1991.
S. A. Yousefi, “Numerical solution of Abel‘s integral equation by using Legendre wavelets”, Appl. Math. Comput., vol. 175, no.1, pp. 574-580, 2006.
N. Mandal, A. Chakrabarti and B. N. Mandal, “Solution of a system of generalized Abel integral equations using fractional calculus”, Appl. Math. Lett., vol.9, no. 5, pp. 1-4, 1996.
Y. Liu and L. Tao, “Mechanical quadrature methods and their extrapolation for solving first kind Abel integral equations”, J. Comput. Appl. Math, vol. 201, no.1, pp. 300-313, 2007.
H. Derili and S. Sohrabi, “Numerical solution of singular integral equations using orthogonal functions”, Math. Sci. (QJMS), vol. 3, pp. 261-272, 2008.
M. Alipour and D. Rostamy, “Bernstein polynomials for solving Abel‘s integral equation”, J. Math. Comput. Sci., vol. 3, no. 4, pp. 403-412, 2011.
A. Shahsavaram, “Haar Wavelet Method to Solve Volterra Integral Equations with Weakly Singular Kernel by Collocation Method”, Appl. Math. Sci., vol. 5, pp. 3201-3210, 2011.
J. Mouley, M. M. Panja and B. N. Mandal, “Numerical solution of an integral equation arising in the problem of cruciform crack using Daubechies scale function”, Math. Sci., vol. 14, no. 1, pp. 21-27, 2020.
M. M. Panja and B. N. Mandal, “Solution of second kind integral equation with Cauchy type kernel using Daubechies scale function”, J. Comput. Appl. Math., vol. 241, pp. 130-142, 2013.
L. J. Curtis, “Concept of the exponential law prior to 1900”, Amer. J. Phys., vol. 46, no. 9, pp. 896-906, 1978.
B. M. Kessler, G. L. Payne, W. W. Polyzou, “Notes on Wavelets”, 2003. .
M. M. Panja and B. N. Mandal, “Gauss-type quadrature rule with complex nodes and Weights for integrals involving Daubechies scale functions and wavelets”, J. Comput. Appl. Math., vol. 290, pp. 609-632, 2015.
E. M. Stein, R. Shakarchi, Functional Analysis: Introduction to Further topics in Analysis‘, Princeton Lectures in Analysis, Princeton: Princeton University Press, ISBN-978-0-691-11387- 6, 2011.
A. Wang, “Lebesgue measure and L2 space”, Mathematics department, University of Chicago, 2011.
M. M. Panja and B. N. Mandal, “Evaluation of singular integrals using Daubechies scale function”, Adv. Comput. Math. Appl., vol. 1, pp. 64-75, 2012.
Most read articles by the same author(s)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- B. N. Mandal, Mridula Kanoria, Water Waves , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
Similar Articles
- M. H. Saleh, S. M. Amer, M. H. Ahmed, The method of Kantorovich majorants to nonlinear singular integral equations with Hilbert Kernel , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Jean M. Tchuenche, A Uniqueness Theorem in an Age-Physiology Dependent Population Dynamics , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Peter D. Hislop, Fundamentals of scattering theory and resonances in quantum mechanics , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Bashir Ahmad, Amjad F. Albideewi, Sotiris K. Ntouyas, Ahmed Alsaedi, Existence results for a multipoint boundary value problem of nonlinear sequential Hadamard fractional differential equations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Carlos Cesar Aranda, Spacetime singularity, singular bounds and compactness for solutions of the Poisson‘s equation , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Chengjun Guo, Donal O‘Regan, Ravi P. Agarwal, Existence of Periodic Solutions for a Class of Second-Order Neutral Differential Equations with Multiple Deviating Arguments , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Bouzid Mansouri, Abdelouaheb Ardjouni, Ahcene Djoudi, Periodicity and stability in neutral nonlinear differential equations by Krasnoselskii‘s fixed point theorem , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.