Weakly strongly star-Menger spaces
-
Gaurav Kumar
gaurav.maths.du@gmail.com
-
Brij K. Tyagi
brijkishore.tyagi@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200287Abstract
A space \(X\) is called weakly strongly star-Menger space if for each sequence (\(\mathcal{U}_{n} : n \in \omega\)) of open covers of \(X\), there is a sequence \((F_n : n\in\omega)\) of finite subsets of \(X\) such that \(\overline{\bigcup_{n\in\omega} St(F_n, \mathcal{U}_n)}\) is \(X\). In this paper, we investigate the relationship of weakly strongly star-Menger spaces with other related spaces. It is shown that a Hausdorff paracompact weakly star Menger \(P\)-space is star-Menger. We also study the images and preimages of weakly strongly star-Menger spaces under various type of maps.
Keywords
M. Bonanzinga, F. Cammaroto and Lj. D. R. KoÄinac, “Star-Hurewicz and related properties”, Appl. Gen. Topol., vol. 5, no. 1, pp. 79-89, 2004.
M. Bonanzinga, F. Cammaroto, Lj. D. R. KoÄinac and M. V. Matveev, “On weaker forms of Menger, Rothberger and Hurewicz properties”, Mat. Vesnik, vol 61, no. 1, pp. 13-23, 2019.
M. Bonanzinga and M. V. Matveev, “Some covering properties for ψ -spaces”, Mat. Vesnik, vol. 61, no. 1, pp. 3–11, 2009.
M. Bonanzinga, M. V. Matveev and B. A. Pansera, “When can a cover of a product be refined by a product of covers”, Question Answers Gen. Topology, vol. 26, no. 2, pp. 67-74, 2008.
M. Bonanzinga and B. A. Pansera, “Relative versions of some star selection principles”, Acta Math. Hungar., vol. 117, no. 3, pp. 231-243, 2007.
A. Caserta, G. M. Di Maio and Lj. D. R. KoÄinac, “Versions of properties (a) and (pp)”, Topology Appl., vol. 158, no. 12, pp. 1360–1368, 2011.
E. K. van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, “Star covering properties”, Topology Appl., vol. 39, no. 1, pp. 71–103, 1991.
E. K. van Douwen, “The integers and topology”, in: K. Kunen, J.E. Vaughan (Eds.), Hand- book of Set-Theoretic Topology, Amsterdam: North-Holland, pp. 111–167, 1984.
R. Engelking, General Topology, Revised and completed edition, Berlin : Heldermann Verlag, 1989.
W. M. Fleischman, “A new extension of countable compactness”, Fund. Math., vol. 67, no. 1, pp. 1–9, 1971.
L. Gillman and M. Jerison, Rings of Continuous Functions, New York: Van Nostrand, 1960.
W. Just, A. W. Miller, M. Scheepers and P. J. Szeptycki, “The combinatorics of open covers II”. Topology Appl.. vol. 73, pp. 241-266, 1996.
D. Kocev, “Menger-type covering properties of topological spaces”, Filomat, vol. 29, no. 1, pp. 99–106, 2015.
D. Kocev, “Almost Menger and related spaces”, Mat. Vesnik, vol. 61, no. 2, pp. 173–180, 2009.
Lj. D. R. KoÄinac, “Star-Menger and related spaces”, Publ. Math. Debrecen, vol. 55, no. 3-4, pp. 421–431, 1999.
Lj. D. R. KoÄinac, “Star-Menger and related spaces II”, Filomat, no. 13, pp. 129–140, 1999.
Lj. D. R. KoÄinac, “Star selection principles: a survey”, Khayyam J. Math., vol. 1, no.1, pp. 82-106, 2015.
Lj. D. R. KoÄinac, “Variations of classical selection principles: An overview”, Quaest. Math., vol. 43 (2020), no.8, pp. 1121-1153, 2020.
Lj. D. R KoÄinac and C. Guido, “Relative covering properties”, Questions Answers Gen. Topology, vol. 19, no. 1, pp. 107-114, 2001.
M. V. Matveev, “Absolutely countably compact spaces”, Topology Appl., vol. 58, no.1, pp. 81–92, 1994.
M. V. Matveev, “Properties close to pseudocompactness and countable compactness”, Vestnik Moskov. Ser. I Mat. Mekh., no. 2, pp. 24-27, 1984.
M. V. Matveev, “A survey on star covering properties”, Topology Atlas (1998), Preprint No. 330.
B. A. Pansera, “Weaker forms of the Menger property”, Quaest. Math., vol. 35, no. 2, pp. 161-169, 2013.
M. Scheepers, “Combinatorics of open covers (I): Ramsey theory”, Topology Appl., vol. 69, no. 1, pp. 31-62, 1992.
Y.-K. Song, “Remarks on strongly star-Menger spaces”, Comment. Math. Univ. Carolin., vol. 54, no. 1, pp. 97–104, 2013.
Y.-K. Song, “On countable star-covering properties”, Appl. Gen. Topol., vol. 8, no. 2, pp. 249–258, 2007.
Y.-K. Song, “Absolutely strongly star-Menger spaces”, Topology Appl., vol 160, no. 3, pp. 475–481, 2013.
Y.-K. Song, “Some remarks on almost star countable spaces”, Studia Sci. Math. Hungar., vol. 52, no. 2, pp. 12–20, 2015.
L. A. Steen and J. A. Seebach, Counterexamples in Topology, New York: Dover Publications, 1995.
R. C. Walker, The Stone-ÄŒech Compactification, Ergebnisse der Mathematik und ihrer Gren- zgebiete, Band 83, New York-Berlin: Springer, 1974.
Similar Articles
- S.K. Mohanta, Srikanta Mohanta, A common fixed point theorem in G-metric spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- R. Devi, A. Selvakumar, M. Parimala, S. Jafari, On strongly α-ð˜-ð˜–ð‘ð‘’ð‘› sets and a new mapping , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- P. G. Patil, T. D. Rayanagoudar, S. S. Benchalli, Generalization of new continuous functions in Topological spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Takashi Noiri, Valeriu Popa, A note on modifications of \(rg\)-closed sets in topological spaces , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- José Sánchez Henriquez, The ð‘‰â‚€ property in Banach Lattices , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- M. Caldas, E. Hatir, S. Jafari, T. Noiri, A New Kupka Type Continuity, λ-Compactness and Multifunctions , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- M. W. Wong, Erhling's Inequality and Pseudo-Differential Operators on ð¿áµ–(IRá´º) , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Yakar Kannai, Topological Methods in Cooperative Games , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Ilker Sahin, Mustafa Telci, A Common Fixed Point Theorem for Pairs of Mappings in Cone Metric Spaces , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Shrabani Banerjee, Binayak S. Choudhury, Weak and strong convergence theorems of a multistep iteration to a common fixed point of a family of nonself asymptotically nonexpansive mappings in banach spaces , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.