Weakly strongly star-Menger spaces
-
Gaurav Kumar
gaurav.maths.du@gmail.com
-
Brij K. Tyagi
brijkishore.tyagi@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200287Abstract
A space \(X\) is called weakly strongly star-Menger space if for each sequence (\(\mathcal{U}_{n} : n \in \omega\)) of open covers of \(X\), there is a sequence \((F_n : n\in\omega)\) of finite subsets of \(X\) such that \(\overline{\bigcup_{n\in\omega} St(F_n, \mathcal{U}_n)}\) is \(X\). In this paper, we investigate the relationship of weakly strongly star-Menger spaces with other related spaces. It is shown that a Hausdorff paracompact weakly star Menger \(P\)-space is star-Menger. We also study the images and preimages of weakly strongly star-Menger spaces under various type of maps.
Keywords
M. Bonanzinga, F. Cammaroto and Lj. D. R. KoÄinac, “Star-Hurewicz and related properties”, Appl. Gen. Topol., vol. 5, no. 1, pp. 79-89, 2004.
M. Bonanzinga, F. Cammaroto, Lj. D. R. KoÄinac and M. V. Matveev, “On weaker forms of Menger, Rothberger and Hurewicz properties”, Mat. Vesnik, vol 61, no. 1, pp. 13-23, 2019.
M. Bonanzinga and M. V. Matveev, “Some covering properties for ψ -spaces”, Mat. Vesnik, vol. 61, no. 1, pp. 3–11, 2009.
M. Bonanzinga, M. V. Matveev and B. A. Pansera, “When can a cover of a product be refined by a product of covers”, Question Answers Gen. Topology, vol. 26, no. 2, pp. 67-74, 2008.
M. Bonanzinga and B. A. Pansera, “Relative versions of some star selection principles”, Acta Math. Hungar., vol. 117, no. 3, pp. 231-243, 2007.
A. Caserta, G. M. Di Maio and Lj. D. R. KoÄinac, “Versions of properties (a) and (pp)”, Topology Appl., vol. 158, no. 12, pp. 1360–1368, 2011.
E. K. van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, “Star covering properties”, Topology Appl., vol. 39, no. 1, pp. 71–103, 1991.
E. K. van Douwen, “The integers and topology”, in: K. Kunen, J.E. Vaughan (Eds.), Hand- book of Set-Theoretic Topology, Amsterdam: North-Holland, pp. 111–167, 1984.
R. Engelking, General Topology, Revised and completed edition, Berlin : Heldermann Verlag, 1989.
W. M. Fleischman, “A new extension of countable compactness”, Fund. Math., vol. 67, no. 1, pp. 1–9, 1971.
L. Gillman and M. Jerison, Rings of Continuous Functions, New York: Van Nostrand, 1960.
W. Just, A. W. Miller, M. Scheepers and P. J. Szeptycki, “The combinatorics of open covers II”. Topology Appl.. vol. 73, pp. 241-266, 1996.
D. Kocev, “Menger-type covering properties of topological spaces”, Filomat, vol. 29, no. 1, pp. 99–106, 2015.
D. Kocev, “Almost Menger and related spaces”, Mat. Vesnik, vol. 61, no. 2, pp. 173–180, 2009.
Lj. D. R. KoÄinac, “Star-Menger and related spaces”, Publ. Math. Debrecen, vol. 55, no. 3-4, pp. 421–431, 1999.
Lj. D. R. KoÄinac, “Star-Menger and related spaces II”, Filomat, no. 13, pp. 129–140, 1999.
Lj. D. R. KoÄinac, “Star selection principles: a survey”, Khayyam J. Math., vol. 1, no.1, pp. 82-106, 2015.
Lj. D. R. KoÄinac, “Variations of classical selection principles: An overview”, Quaest. Math., vol. 43 (2020), no.8, pp. 1121-1153, 2020.
Lj. D. R KoÄinac and C. Guido, “Relative covering properties”, Questions Answers Gen. Topology, vol. 19, no. 1, pp. 107-114, 2001.
M. V. Matveev, “Absolutely countably compact spaces”, Topology Appl., vol. 58, no.1, pp. 81–92, 1994.
M. V. Matveev, “Properties close to pseudocompactness and countable compactness”, Vestnik Moskov. Ser. I Mat. Mekh., no. 2, pp. 24-27, 1984.
M. V. Matveev, “A survey on star covering properties”, Topology Atlas (1998), Preprint No. 330.
B. A. Pansera, “Weaker forms of the Menger property”, Quaest. Math., vol. 35, no. 2, pp. 161-169, 2013.
M. Scheepers, “Combinatorics of open covers (I): Ramsey theory”, Topology Appl., vol. 69, no. 1, pp. 31-62, 1992.
Y.-K. Song, “Remarks on strongly star-Menger spaces”, Comment. Math. Univ. Carolin., vol. 54, no. 1, pp. 97–104, 2013.
Y.-K. Song, “On countable star-covering properties”, Appl. Gen. Topol., vol. 8, no. 2, pp. 249–258, 2007.
Y.-K. Song, “Absolutely strongly star-Menger spaces”, Topology Appl., vol 160, no. 3, pp. 475–481, 2013.
Y.-K. Song, “Some remarks on almost star countable spaces”, Studia Sci. Math. Hungar., vol. 52, no. 2, pp. 12–20, 2015.
L. A. Steen and J. A. Seebach, Counterexamples in Topology, New York: Dover Publications, 1995.
R. C. Walker, The Stone-ÄŒech Compactification, Ergebnisse der Mathematik und ihrer Gren- zgebiete, Band 83, New York-Berlin: Springer, 1974.
Similar Articles
- Mouffak Benchohra, Fatima-Zohra Mostefai, Weak Solutions of Fractional Order Pettis Integral Inclusions with Multiple Time Delay in Banach Spaces , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Sushanta Kumar Mohanta, Coupled coincidence points for generalized (ψ, ϕ)-pair mappings in ordered cone metric spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Binayak Choudhury, Subhajit Kundu, Approximating a solution of an equilibrium problem by Viscosity iteration involving a nonexpansive semigroup , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Carlos Cesar Aranda, Spacetime singularity, singular bounds and compactness for solutions of the Poisson‘s equation , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Gina Lusares, Armando Rodado Amaris, Parametrised databases of surfaces based on Teichmüller theory , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
- Amar Kumar Banerjee, Pratap Kumar Saha, Semi Open sets in bispaces , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.