Weakly strongly star-Menger spaces
-
Gaurav Kumar
gaurav.maths.du@gmail.com
-
Brij K. Tyagi
brijkishore.tyagi@gmail.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000200287Abstract
A space \(X\) is called weakly strongly star-Menger space if for each sequence (\(\mathcal{U}_{n} : n \in \omega\)) of open covers of \(X\), there is a sequence \((F_n : n\in\omega)\) of finite subsets of \(X\) such that \(\overline{\bigcup_{n\in\omega} St(F_n, \mathcal{U}_n)}\) is \(X\). In this paper, we investigate the relationship of weakly strongly star-Menger spaces with other related spaces. It is shown that a Hausdorff paracompact weakly star Menger \(P\)-space is star-Menger. We also study the images and preimages of weakly strongly star-Menger spaces under various type of maps.
Keywords
M. Bonanzinga, F. Cammaroto and Lj. D. R. KoÄinac, “Star-Hurewicz and related properties”, Appl. Gen. Topol., vol. 5, no. 1, pp. 79-89, 2004.
M. Bonanzinga, F. Cammaroto, Lj. D. R. KoÄinac and M. V. Matveev, “On weaker forms of Menger, Rothberger and Hurewicz properties”, Mat. Vesnik, vol 61, no. 1, pp. 13-23, 2019.
M. Bonanzinga and M. V. Matveev, “Some covering properties for ψ -spaces”, Mat. Vesnik, vol. 61, no. 1, pp. 3–11, 2009.
M. Bonanzinga, M. V. Matveev and B. A. Pansera, “When can a cover of a product be refined by a product of covers”, Question Answers Gen. Topology, vol. 26, no. 2, pp. 67-74, 2008.
M. Bonanzinga and B. A. Pansera, “Relative versions of some star selection principles”, Acta Math. Hungar., vol. 117, no. 3, pp. 231-243, 2007.
A. Caserta, G. M. Di Maio and Lj. D. R. KoÄinac, “Versions of properties (a) and (pp)”, Topology Appl., vol. 158, no. 12, pp. 1360–1368, 2011.
E. K. van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, “Star covering properties”, Topology Appl., vol. 39, no. 1, pp. 71–103, 1991.
E. K. van Douwen, “The integers and topology”, in: K. Kunen, J.E. Vaughan (Eds.), Hand- book of Set-Theoretic Topology, Amsterdam: North-Holland, pp. 111–167, 1984.
R. Engelking, General Topology, Revised and completed edition, Berlin : Heldermann Verlag, 1989.
W. M. Fleischman, “A new extension of countable compactness”, Fund. Math., vol. 67, no. 1, pp. 1–9, 1971.
L. Gillman and M. Jerison, Rings of Continuous Functions, New York: Van Nostrand, 1960.
W. Just, A. W. Miller, M. Scheepers and P. J. Szeptycki, “The combinatorics of open covers II”. Topology Appl.. vol. 73, pp. 241-266, 1996.
D. Kocev, “Menger-type covering properties of topological spaces”, Filomat, vol. 29, no. 1, pp. 99–106, 2015.
D. Kocev, “Almost Menger and related spaces”, Mat. Vesnik, vol. 61, no. 2, pp. 173–180, 2009.
Lj. D. R. KoÄinac, “Star-Menger and related spaces”, Publ. Math. Debrecen, vol. 55, no. 3-4, pp. 421–431, 1999.
Lj. D. R. KoÄinac, “Star-Menger and related spaces II”, Filomat, no. 13, pp. 129–140, 1999.
Lj. D. R. KoÄinac, “Star selection principles: a survey”, Khayyam J. Math., vol. 1, no.1, pp. 82-106, 2015.
Lj. D. R. KoÄinac, “Variations of classical selection principles: An overview”, Quaest. Math., vol. 43 (2020), no.8, pp. 1121-1153, 2020.
Lj. D. R KoÄinac and C. Guido, “Relative covering properties”, Questions Answers Gen. Topology, vol. 19, no. 1, pp. 107-114, 2001.
M. V. Matveev, “Absolutely countably compact spaces”, Topology Appl., vol. 58, no.1, pp. 81–92, 1994.
M. V. Matveev, “Properties close to pseudocompactness and countable compactness”, Vestnik Moskov. Ser. I Mat. Mekh., no. 2, pp. 24-27, 1984.
M. V. Matveev, “A survey on star covering properties”, Topology Atlas (1998), Preprint No. 330.
B. A. Pansera, “Weaker forms of the Menger property”, Quaest. Math., vol. 35, no. 2, pp. 161-169, 2013.
M. Scheepers, “Combinatorics of open covers (I): Ramsey theory”, Topology Appl., vol. 69, no. 1, pp. 31-62, 1992.
Y.-K. Song, “Remarks on strongly star-Menger spaces”, Comment. Math. Univ. Carolin., vol. 54, no. 1, pp. 97–104, 2013.
Y.-K. Song, “On countable star-covering properties”, Appl. Gen. Topol., vol. 8, no. 2, pp. 249–258, 2007.
Y.-K. Song, “Absolutely strongly star-Menger spaces”, Topology Appl., vol 160, no. 3, pp. 475–481, 2013.
Y.-K. Song, “Some remarks on almost star countable spaces”, Studia Sci. Math. Hungar., vol. 52, no. 2, pp. 12–20, 2015.
L. A. Steen and J. A. Seebach, Counterexamples in Topology, New York: Dover Publications, 1995.
R. C. Walker, The Stone-ÄŒech Compactification, Ergebnisse der Mathematik und ihrer Gren- zgebiete, Band 83, New York-Berlin: Springer, 1974.
Similar Articles
- Svetlin Georgiev, Mohamed Majdoub, Two nonnegative solutions for two-dimensional nonlinear wave equations , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Buddhadev Pal, Santosh Kumar, Pankaj Kumar, Einstein warped product spaces on Lie groups , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
- Said Ait Temghart, Chakir Allalou, Adil Abbassi, Existence results for a class of local and nonlocal nonlinear elliptic problems , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Brian Weber, Keaton Naff, Canonical metrics and ambiKähler structures on 4-manifolds with \(U(2)\) symmetry , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- René Erlin Castillo, Héctor Camilo Chaparro, Función maximal, un subespacio de Orlicz-Lorentz, y el operador multiplicación , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.