Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models
-
Homero G. Díaz-Marín
homero.diaz@umich.mx
-
Osvaldo Osuna
osvaldo.osuna@umich.mx
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300343Abstract
We prove that for certain polynomial differential equations in the plane arising from predator-prey type III models with generalized rational functional response, any algebraic solution should be a rational function. As a consequence, limit cycles, which are unique for these dynamical systems, are necessarily trascendental ovals. We exemplify these findings by showing a numerical simulation within a system arising from zooplankton-phytoplankton dynamics.
Keywords
D. Barrios-O‘Neill, J. T. A. Dick, M. C. Emmerson, A. Ricciardi and H. J. MacIsaac, “Predator-free space, functional responses and biological invasions”, Functional Ecology, vol. 29, no. 3, pp. 377–384, 2015.
J. Cano, “An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms”, Ann. Inst. Fourier (Grenoble), vol. 43, no. 1, pp. 125–142, 1993.
M. V. Demina, “Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems”. Phys. Lett. A, vol. 382, no. 20, pp. 353–1360, 2018.
M. V. Demina, “Invariant algebraic curves for liénard dynamical systems revisited”, Appl. Math. Lett., vol. 84, pp. 42–48, 2018.
A. Ferragut and A. Gasull. “Non-algebraic oscillations for predator-prey models”, Publ. Mat., vol. 58, suppl., pp. 195–207, 2014.
J. Giné and M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations”, Nonlinearity, vol. 19, no. 8, pp. 1939–1950, 2006.
J. Giné and J. Llibre, “Strongly formal Weierstrass non-integrability for polynomial differential systems in C2”, Electron. J. Qual. Theory Differ. Equ., no. 1, pp. 1–16, 2020.
J. Giné and J. Llibre, “Formal Weierstrass nonintegrability criterion for some classes of polynomial differential systems in C2”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., vol. 30, no. 4, 7 pages, 2020.
M. Hayashi, “On polynomial Li Ìenard systems which have invariant algebraic curves”, Funkcial. Ekvac., vol. 39, no. 3, pp. 403–408, 1996.
E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications, Inc., Mineola, NY, 1976.
E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944.
K. Odani, “The limit cycle of the van der Pol equation is not algebraic”, J. Differential Equations, vol. 115, no. 1, pp. 146–152, 1995.
L. A. Real, “The kinetics of functional response”, The American Naturalist, vol. 111, no. 978, pp. 289–300, 1977.
B. Rosenbaum and B. C. Rall, “Fitting functional responses: Direct parameter estimation by simulating differential equations”, Methods in Ecology and Evolution, vol. 9, no. 10, pp. 2076–2090, 2018.
V. A. Ryabchenko, M. J. R. Fasham, B. A. Kagan and E. E. Popova, “What causes short-term oscillations in ecosystem models of the ocean mixed layer?”, Journal of Marine Systems, vol. 13, no. 1, pp. 33–50, 1997.
J. Sugie, “Uniqueness of limit cycles in a predator-prey system with Holling-type functional response”, Quart. Appl. Math., vol. 58, no. 3, pp. 577–590, 2000.
J. Sugie, R. Kohno, and R. Miyazaki, “On a predator-prey system of Holling type”, Proc. Amer. Math. Soc., vol. 125, no. 7, pp. 2041–2050, 1997.
R. K. Upadhyay and S. R. K. Iyengar, Introduction to Mathematical Modeling and Chaotic Dynamics, CRC Press, 2013.
Similar Articles
- Gonzalo Perera, Juan Piccini, Introducción a la modelización matemática de epidemias , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- D. Goeleven, An Expository Discussion on Singular Inequality Problems and Equilibrium Models in Economics , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Constantin Corduneanu, Some special classes of neutral functional differential equations , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Jean-Claude Martzloff, Metonic Cycles, Classical and Non-Classical, and Chinese Calendrical Calculations (104 BC - 618 AD) , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- A. El-Sayed Ahmed, A. Kamal, T.I. Yassen, Characterizations for certain analytic functions by series expansions with Hadamard gaps , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Agostino Prástaro, Integral Bordisms and Green Kernels in PDEs , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- J¨orn Steuding, The Fibonacci Zeta-Function is Hypertranscendental , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.