Basic asymptotic estimates for powers of Wallis‘ ratios
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.4067/S0719-06462021000300357Abstract
For any \(a\in{\mathbb R}\), for every \(n\in{\mathbb N}\), and for \(n\)-th Wallis' ratio \(w_n:=\prod_{k=1}^n\frac{2k-1}{2k}\), the relative error \(r_{\,\!_0}(a,n):=\big(v_{\,\!_0}(a,n)-w_n^a\big)/w_n^a\) of the approximation \(w_n^a\approx v_{\,\!_0}(a,n):=(\pi n)^{-a/2} \) is estimated as \( \big|r_{\,\!_0}(a,n)\big| < \frac{1}{4n}\). The improvement \(w_n^a\approx v(a,n):=(\pi n)^{-a/2}\left(1-\frac{a}{8n}+\frac{a^2}{128n^2}\right)\) is also studied.
Keywords
H. Alzer, “Inequalities for the constants of Landau and Lebesgue”, J. Comput. Appl. Math., vol. 139, no. 2, pp. 215–230, 2002.
T. Burić and N. Elezović, “Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions”, J. Comput. Appl. Math., vol. 235, no. 11, pp. 3315–3331, 2011.
T. Burić and N. Elezović, “New asymptotic expansions of the quotient of gamma functions”, Integral Transforms and Spec. Funct., vol. 23, no. 5, pp. 355–368, 2012.
C.-P. Chen and F. Qi, “The best bounds in Wallis‘ inequality”, Proc. Amer. Math. Soc., vol. 133, no. 2, pp. 397–401, 2005.
V. G. Cristea, “A direct approach for proving Wallis ratio estimates and an improvement of Zhang-Xu-Situ inequality”, Studia Univ. BabeÅŸ-Bolyai Math., vol. 60, no. 2, pp. 201–209, 2015.
S. Dumitrescu, “Estimates for the ratio of gamma functions using higher order roots”, Stud. Univ. BabeÅŸ-Bolyai Math., vol. 60, pp. 173–181, 2015.
N. Elezović, L. Lin and L. Vukšić, “Inequalities and asymptotic expansions of the Wallis sequence and the sum of the Wallis ratio”, J. Math. Inequal., vol. 7, no. 4, pp. 679–695, 2013.
N. Elezović, “Asymptotic expansions of gamma and related functions, binomial coefficient, inequalities and means”, J. Math. Inequal., vol. 9, no. 4, pp. 1001–1054, 2015.
T. Friedmann and C. R. Hagen, “Quantum mechanical derivation of the Wallis formula for Ï€”, J. Math. Phys., vol. 56, no. 11, 3 pages, 2015.
S. Guo, J.-G. Xu and F. Qi, “Some exact constants for the approximation of the quantity in the Wallis‘ formula”, J. Inequal. Appl., vol. 2013 , no. 67, 7 pages, 2013.
S. Guo, Q. Feng, Y.-Q. Bi and Q.-M. Luo; “A sharp two-sided inequality for bounding the Wallis ratio”, J. Inequal. Appl., vol. 2015, no. 43, 5 pages, 2015.
P. Haggstrom, Quantum mechanical derivation of the Wallis formula for Pi, https: //gotohaggstrom.com/QuantummechanicalderivationoftheWallisformulaforPi.pdf, 2020.
M. D. Hirschhorn, “Comments on the paper: “Wallis sequence estimated through the Euler- Maclaurin formula: even from the Wallis product Ï€ could be computed fairly accurately” by V. Lampret”, Austral. Math. Soc. Gaz., vol. 32, no. 3, pp. 194, 2005.
D. K. Kazarinoff, “On Wallis‘ formula”, Edinburgh Math. Notes, no. 40, pp. 19–21, 1956.
T. Koshy, Catalan numbers with applications, New York: Oxford University Press, 2009.
A. Laforgia and P. Natalini, “On the asymptotic expansion of a ratio of gamma functions”, J. Math. Anal. Appl., vol. 389, no. 4, pp. 833–837, 2012.
V. Lampret, “An asymptotic approximation of Wallis‘ sequence”, Cent. Eur. J. Math., vol. 10, no. 2, pp. 775–787, 2012.
V. Lampret, “Wallis‘ sequence estimated accurately using an alternating series”, J. Number Theory, vol. 172, pp. 256–269, 2017.
V. Lampret, “A simple asymptotic estimate of Wallis‘ ratio using Stirling‘s factorial formula”, Bull. Malays. Math. Sci. Soc., vol. 42, no. 6, pp. 3213–3221, 2019.
V. Lampret, “The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series”, Cubo, vol. 21, no. 2, pp. 51–64, 2019.
L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics: Mechanics, 3ed, Oxford: Butterworth-Heinemann, 1986.
C. Mortici, “Sharp inequalities and complete monotonicity for the Wallis ratio”, Bull. Belg. Math. Math. Soc. Simon Stevin, vol. 17, no. 5, pp. 929–936, 2010.
C. Mortici, “A new method for establishing and proving new bounds for the Wallis ratio”, Math. Inequal. Appl., vol. 13, no. 4, pp. 803–815, 2010.
C. Mortici, “Refinements of Gurland‘s formula for pi”, Comput. Math. Appl., vol. 62, no. 6, pp. 2616–2620, 2011.
C. Mortici, “Sharp bounds of the Landau constants”, Math. Comp., vol. 80, no. 274, pp. 1011–1015, 2011.
C. Mortici, “Completely monotone functions and the Wallis ratio”, Appl. Math. Lett., vol. 25, no. 4, pp. 717–722, 2012.
C. Mortici and V. G. Cristea, “Estimates for Wallis‘ ratio and related functions”, Indian J. Pure Appl. Math., vol. 47, no. 3, pp. 437–447, 2016.
F. Qi and C. Mortici, “Some best approximation formulas and the inequalities for the Wallis ratio”, Appl. Math. Comput., vol. 253, pp. 363–368, 2015.
F. Qi, “An improper integral, the beta function, the Wallis ratio, and the Catalan numbers”, Probl. Anal. Issues Anal., vol. 7(25), no. 1, pp. 104–115, 2018.
D. V. Slavić, “On inequalities for Γ(x + 1)/Γ(x + 1/2)”, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., no. 498–541, pp. 17–20, 1975.
J.-S. Sun and C.-M. Qu, “Alternative proof of the best bounds of Wallis‘ inequality”, Commun. Math. Anal., vol. 2, no. 1, pp. 23–27, 2007.
S. Wolfram, Mathematica, version 7.0, Wolfram Research, Inc., 1988–2009.
X.-M. Zhang, T. Q. Xu and L. B. Situ “Geometric convexity of a function involving gamma function and application to inequality theory”, JIPAM. J. Inequal. Pure Appl. Math., vol. 8, no. 1, art. 17, 9 pages, 2007.
Most read articles by the same author(s)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Estimating the remainder of an alternating \(p\)-series revisited , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
Similar Articles
- Rigoberto Medina, Manuel Pinto, Conditionally integrable perturbations of linear differential systems , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- George A. Anastassiou, Caputo fractional Iyengar type Inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- George A. Anastassiou, Ostrowski-Sugeno fuzzy inequalities , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- B. C. Das, Soumen De, B. N. Mandal, Wave propagation through a gap in a thin vertical wall in deep water , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Bapurao C. Dhage, Existence and Attractivity Theorems for Nonlinear Hybrid Fractional Integrodifferential Equations with Anticipation and Retardation , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Edoardo Ballico, A characterization of \(\mathbb F_q\)-linear subsets of affine spaces \(\mathbb F_{q^2}^n\) , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Cong He, Jingchun Chen, Vlasov-Poisson equation in weighted Sobolev space \(W^{m, p}(w)\) , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Jairo Bochi, Godofredo Iommi, Mario Ponce, Perfect matchings in inhomogeneous random bipartite graphs in random environment , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
<< < 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.