On upper and lower ω-irresolute multifunctions
-
C. Carpintero
carpintero.carlos@gmail.com
-
E. Rosas
ennisrafael@gmail.com
-
N. Rajesh
nrajesh_topology@yahoo.co.in
-
S. Saranyasri
srisaranya_2010@yahoo.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462014000300001Abstract
In this paper we define upper (lower) ω-irresolute multifunction and obtain some characterizations and some basic properties of such a multifunction.
Keywords
[1] K. Al-Zoubi and B. Al-Nashef, The topology of ω-open subsets, Al-Manarah (9) (2003), 169- 179.
[2] A. Al-omari ans M. S. M. Noorani, Contra-ω-continuous and almost ω-continuous functions, Int. J. Math. Math. Sci. (9) (2007), 169-179.
[3] T. Banzaru, Multifunctions and M-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.
[4] C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasri, Some properties of upper/lower ω- continuous multifunctions (submitted).
[5] C. Carpintero, N.Rajesh, E.Rosas and S. Saranyasri, On upper and lower faintly ω-continuous multifunctions (submitted).
[6] C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasri, On Slightly omega-continuous multi- functions, to appear in Punjab University Journal of Mathematics (2014).
[7] C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasri, Properties of Faintly ω-continuous functions, Boletín de Matemáticas, 20(2) (2014). 135-143.
[8] I. Kovacevic, Subsets and paracompactness, Univ. u. Novom Sadu, Zb. Rad. Prirod. Mat. Fac. Ser. Mat., 14(1984), 79-87.
[9] H. Z. Hdeib, ω-closed mappings, Revista Colombiana Mat., 16(1982), 65-78.
[10] T. Noiri, A. Al-omari and M. S. M. Noorani, Slightly ω-continuous functions, Fasc. Math., (41) (2009), 97-106.
[11] T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), 363-380.
[12] T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20(1) (2010),185-214.
[13] T. Noiri and V. Popa, A unified theory of weak continuity for multifunctions, Stud. Cerc. St Ser. Mat. Univ. Bacau, 16 (2006),167-200.
[14] G. T. Whyburn, Retracting multifunctions, Proc. Nat. Acad. Sci., 59(1968), 343-348.
[15] I. Zorlutuna, ω-continuous multifunctions, Filomat, 27(1) (2013), 155-162.
[2] A. Al-omari ans M. S. M. Noorani, Contra-ω-continuous and almost ω-continuous functions, Int. J. Math. Math. Sci. (9) (2007), 169-179.
[3] T. Banzaru, Multifunctions and M-product spaces, Bull. Stin. Tech. Inst. Politech. Timisoara, Ser. Mat. Fiz. Mer. Teor. Apl., 17(31)(1972), 17-23.
[4] C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasri, Some properties of upper/lower ω- continuous multifunctions (submitted).
[5] C. Carpintero, N.Rajesh, E.Rosas and S. Saranyasri, On upper and lower faintly ω-continuous multifunctions (submitted).
[6] C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasri, On Slightly omega-continuous multi- functions, to appear in Punjab University Journal of Mathematics (2014).
[7] C. Carpintero, N. Rajesh, E. Rosas and S. Saranyasri, Properties of Faintly ω-continuous functions, Boletín de Matemáticas, 20(2) (2014). 135-143.
[8] I. Kovacevic, Subsets and paracompactness, Univ. u. Novom Sadu, Zb. Rad. Prirod. Mat. Fac. Ser. Mat., 14(1984), 79-87.
[9] H. Z. Hdeib, ω-closed mappings, Revista Colombiana Mat., 16(1982), 65-78.
[10] T. Noiri, A. Al-omari and M. S. M. Noorani, Slightly ω-continuous functions, Fasc. Math., (41) (2009), 97-106.
[11] T. Noiri and V. Popa, Almost weakly continuous multifunctions, Demonstratio Math., 26 (1993), 363-380.
[12] T. Noiri and V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res. Ser. Math. Inform., 20(1) (2010),185-214.
[13] T. Noiri and V. Popa, A unified theory of weak continuity for multifunctions, Stud. Cerc. St Ser. Mat. Univ. Bacau, 16 (2006),167-200.
[14] G. T. Whyburn, Retracting multifunctions, Proc. Nat. Acad. Sci., 59(1968), 343-348.
[15] I. Zorlutuna, ω-continuous multifunctions, Filomat, 27(1) (2013), 155-162.
Most read articles by the same author(s)
- E. Rosas, C. Carpintero, M. Salas, J. Sanabria, L. Vásquez, Almost ω-continuous functions defined by ω-open sets due to Arhangel‘ski ̆ı , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
Similar Articles
- Franco Fagnola, Damiano Poletti, Emanuela Sasso, Energy transfer in open quantum systems weakly coupled with two reservoirs , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- S.V. Ludkovsky, Wrap groups of fiber bundles and their structure , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Ljubiša D.R. KoÄinac, Selection principles and continuous images , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Martin Bohner, Julius Heim, Ailian Liu, Solow models on time scales , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- José Sanabria, Ennis Rosas, Neelamegarajan Rajesh, Carlos Carpintero, Amalia Gómez, S-paracompactness modulo an ideal , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Sorin G. Gal, Remarks on the generation of semigroups of nonlinear operators on p-Fréchet spaces, 0 < p < 1 , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- L.T. Rachdi, A. Rouz, Homogeneous Besov spaces associated with the spherical mean operator , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the semilocal convergence of Newton–type methods, when the derivative is not continuously invertible , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2014-10-01
How to Cite
[1]
C. Carpintero, E. Rosas, N. Rajesh, and . S. Saranyasri, “On upper and lower ω-irresolute multifunctions”, CUBO, vol. 16, no. 3, pp. 01–10, Oct. 2014.
Issue
Section
Articles