Surjective maps preserving the reduced minimum modulus of products
-
Sepide Hajighasemi
sepide68ghasemi@gmail.com
-
Shirin Hejazian
hejazian@um.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.139Abstract
Suppose \(\mathfrak{B}(H)\) is the Banach algebra of all bounded linear operators on a Hilbert space \(H\) with \(\dim(H)\geq 3\). Let \(\gamma(.)\) denote the reduced minimum modulus of an operator. We charaterize surjective maps \(\varphi\) on \(\mathfrak{B}(H)\) satisfying
\(\gamma(\varphi(T)\varphi(S))=\gamma(T S)\;\;\;(T, S\in \mathfrak{B}(H)).\)
Also, we give the general form of surjective maps on \(\mathfrak B(H)\) preserving the reduced minimum modulus of Jordan triple products of operators.
Keywords
Mathematics Subject Classification:
C. Apostol, “The reduced minimum modulus”, Michigan Math. J., vol. 32, no. 3, pp. 279–294, 1985.
A. Bourhim, “Additive maps preserving the reduced minimum modulus of Banach space operators”, J. Operator Theory, vol. 67, no. 1, pp. 279–288, 2012.
A. Bourhim and M. Burgos and V. S. Shulman, “Linear maps preserving the minimum and reduced minimum moduli”, J. Funct. Anal., vol. 258, no. 1, pp. 50–66, 2010.
M. Breˇsar and P. Sˇemrl, “Zero product preserving maps on Matrix rings over division rings”, in Linear and multilinear algebra and function spaces, Providence, RI: American Mathematical Society, 2020, pp. 195–213.
C. Costara, “On nonlinear maps preserving the reduced minimum modulus on differences of matrices”, Linear Algebra Appl., vol. 507, pp. 288–299, 2016.
J. Cui and J. Hou, “Maps leaving functional values of operator products invariant”, Linear Algebra Appl., vol. 428, no. 7, pp. 1649–1663, 2008.
M. Doboviˇsek, B. Kuzma, G. Leˇsnjak, C. K. Li and T. Petek, “Mappings that preserve pairs of operators with zero triple Jordan product” Linear Algebra Appl., vol. 426, no. 2–3, pp. 255–279, 2007.
R. Harte and M. Mbekhta, “Generalized inverses in C∗-algebras II”, Studia Mathematica, vol. 106, no. 2, pp. 129–138, 1993.
J. Mashreghi and A. Stepanyan, “Nonlinear maps preserving the reduced minimum modulus of operators”, Linear Algebra Appl., vol. 493, pp. 426–432, 2016.
M. Mbekhta, “Linear maps preserving the generalized spectrum”, Extracta Math., vol. 22, no. 1, pp. 45–54, 2007.
L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces, Lecture Notes in Mathematics 1895, Berlin: Springer-Verlag, 2007.
V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Operator Theory: Advances and Applications 139, Basel: Birkhäuser Verlag, 2007.
H. Skhiri, “Reduced minimum modulus preserving in Banach space”, Integral Equations Operator Theory, vol. 62, no. 1, pp. 137–148, 2008.
Most read articles by the same author(s)
- Mohadeseh Rostamani, Shirin Hejazian, Maps preserving Fredholm or semi-Fredholm elements relative to some ideal , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
Similar Articles
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Alain Guichardet, Difféomorphismes du cercle et déformations des produits croisés , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Cristián Mallol, A propos des algèbres pondérables , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- M. T. Alcalde, Ricardo Baeza, Cesar Burgueño, Caracterización en Álgebras de Bernstein , CUBO, A Mathematical Journal: No. 4 (1988): CUBO, Revista de Matemática
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Takahiro Sudo, The K-theory ranks for crossed products of C*-algebras by the group of integers , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- Shwet Nisha, P. K. Parida, Super-Halley method under majorant conditions in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
<< < 12 13 14 15 16 17 18 19 20 21 22 23 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. Hajighasemi et. al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











