Surjective maps preserving the reduced minimum modulus of products
-
Sepide Hajighasemi
sepide68ghasemi@gmail.com
-
Shirin Hejazian
hejazian@um.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2501.139Abstract
Suppose \(\mathfrak{B}(H)\) is the Banach algebra of all bounded linear operators on a Hilbert space \(H\) with \(\dim(H)\geq 3\). Let \(\gamma(.)\) denote the reduced minimum modulus of an operator. We charaterize surjective maps \(\varphi\) on \(\mathfrak{B}(H)\) satisfying
\(\gamma(\varphi(T)\varphi(S))=\gamma(T S)\;\;\;(T, S\in \mathfrak{B}(H)).\)
Also, we give the general form of surjective maps on \(\mathfrak B(H)\) preserving the reduced minimum modulus of Jordan triple products of operators.
Keywords
Mathematics Subject Classification:
C. Apostol, “The reduced minimum modulus”, Michigan Math. J., vol. 32, no. 3, pp. 279–294, 1985.
A. Bourhim, “Additive maps preserving the reduced minimum modulus of Banach space operators”, J. Operator Theory, vol. 67, no. 1, pp. 279–288, 2012.
A. Bourhim and M. Burgos and V. S. Shulman, “Linear maps preserving the minimum and reduced minimum moduli”, J. Funct. Anal., vol. 258, no. 1, pp. 50–66, 2010.
M. Breˇsar and P. Sˇemrl, “Zero product preserving maps on Matrix rings over division rings”, in Linear and multilinear algebra and function spaces, Providence, RI: American Mathematical Society, 2020, pp. 195–213.
C. Costara, “On nonlinear maps preserving the reduced minimum modulus on differences of matrices”, Linear Algebra Appl., vol. 507, pp. 288–299, 2016.
J. Cui and J. Hou, “Maps leaving functional values of operator products invariant”, Linear Algebra Appl., vol. 428, no. 7, pp. 1649–1663, 2008.
M. Doboviˇsek, B. Kuzma, G. Leˇsnjak, C. K. Li and T. Petek, “Mappings that preserve pairs of operators with zero triple Jordan product” Linear Algebra Appl., vol. 426, no. 2–3, pp. 255–279, 2007.
R. Harte and M. Mbekhta, “Generalized inverses in C∗-algebras II”, Studia Mathematica, vol. 106, no. 2, pp. 129–138, 1993.
J. Mashreghi and A. Stepanyan, “Nonlinear maps preserving the reduced minimum modulus of operators”, Linear Algebra Appl., vol. 493, pp. 426–432, 2016.
M. Mbekhta, “Linear maps preserving the generalized spectrum”, Extracta Math., vol. 22, no. 1, pp. 45–54, 2007.
L. Molnár, Selected preserver problems on algebraic structures of linear operators and on function spaces, Lecture Notes in Mathematics 1895, Berlin: Springer-Verlag, 2007.
V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Operator Theory: Advances and Applications 139, Basel: Birkhäuser Verlag, 2007.
H. Skhiri, “Reduced minimum modulus preserving in Banach space”, Integral Equations Operator Theory, vol. 62, no. 1, pp. 137–148, 2008.
Most read articles by the same author(s)
- Mohadeseh Rostamani, Shirin Hejazian, Maps preserving Fredholm or semi-Fredholm elements relative to some ideal , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
Similar Articles
- Takahiro Sudo, Computing the inverse Laplace transform for rational functions vanishing at infinity , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Agostino Prástaro, Integral Bordisms and Green Kernels in PDEs , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Sunny Chauhan, B. D. Pant, Mohammad Imdad, Coincidence and common fixed point theorems in Non-Archimedean Menger PM-spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Paolo D‘alessandro, Closure of pointed cones and maximum principle in Hilbert spaces , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Stanislas Ouaro, Noufou Sawadogo, Nonlinear elliptic \(p(u)-\) Laplacian problem with Fourier boundary condition , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Hiroko Manaka, Wataru Takahashi, Weak convergence theorems for maximal monotone operators with nonspreading mappings in a Hilbert space , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Zvonko Cerin, Squares in Euler triples from Fibonacci and Lucas numbers , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Hassan Sedaghat, Global Attractivity, Oscillations and Chaos in A Class of Nonlinear, Second Order Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Derek Hacon, Jordan normal form via ODE's , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 S. Hajighasemi et. al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











