Some observations on a clopen version of the Rothberger property
-
Manoj Bhardwaj
manojmnj27@gmail.com
-
Alexander V. Osipov
oab@list.ru
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2502.161Abstract
In this paper, we prove that a clopen version \(S_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) of the Rothberger property and Borel strong measure zeroness are independent. For a zero-dimensional metric space \((X,d)\), \(X\) satisfies \(S_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) if, and only if, \(X\) has Borel strong measure zero with respect to each metric which has the same topology as \(d\) has. In a zero-dimensional space, the game \(G_1(\mathcal{O}, \mathcal{O})\) is equivalent to the game \(G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) and the point-open game is equivalent to the point-clopen game. Using reflections, we obtain that the game \(G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) and the point-clopen game are strategically and Markov dual. An example is given for a space on which the game \(G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})\) is undetermined.
Keywords
Mathematics Subject Classification:
E. Borel, “Sur la classification des ensembles de mesure nulle”, Bull. Soc. Math. France, vol. 47, pp. 97–125, 1919.
M. Bhardwaj and A. V. Osipov, “Mildly version of Hurewicz basis covering property and Hurewicz measure zero spaces”, Bull. Belg. Math. Soc. Simon Stevin, vol. 29, no. 1, pp. 123–133, 2022.
M. Bhardwaj and A. V. Osipov, “Some observations on the mildly Menger property and topological games”, Filomat, vol. 36, no. 15, pp. 5289–5296, 2022.
M. Bhardwaj and A. V. Osipov, “Star versions of the Hurewicz basis covering property and strong measure zero spaces”, Turkish J. Math., vol. 44, no. 3, pp. 1042–1053, 2020.
S. Clontz and J. Holshouser, “Limited information strategies and discrete selectivity”, Topology Appl., vol. 265, Art. ID 106815, 2019.
S. Clontz, “Dual selection games”, Topology Appl., vol. 272, Art. ID 107056, 2020.
R. Engelking, General Topology, Revised and completed edition. Berlin, Germany: Heldermann Verlag, 1989.
F. Galvin, “Indeterminacy of point-open games”, Bull. Acad. Pol. Sci., vol. 26, no. 5, pp. 445–449, 1978.
W. Hurewicz, “Über eine verallgemeinerung des Borelschen theorems”, Math. Z., vol. 24, pp. 401–421, 1925.
A. W. Miller and D. H. Fremlin, “Some properties of Hurewicz, Menger and Rothberger”, Fund. Math., vol. 129, pp. 17–33, 1988.
J. Pawlikowski, “Undetermined sets of point-open games”, Fund. Math., vol. 144, pp. 279–285, 1994.
F. Rothberger, “Eine Verschörfung der Eigenschaft C”, Fund. Math., vol. 30, pp. 50–55, 1938.
M. Scheepers, “Combinatorics of open covers (I): Ramsey theory”, Topology Appl., vol. 69, no. 1, pp. 31–62, 1996.
R. Telgársky, “Spaces defined by topological games”, Fund. Math., vol. 88, pp. 193–223, 1975.
- Ministry of Science and Higher Education of the Russian Federation
Similar Articles
- André Nachbin, Some Mathematical Models for Wave Propagation , CUBO, A Mathematical Journal: Vol. 3 No. 1 (2001): CUBO, Matemática Educacional
- Manuel Bustos V., Cálculo subdiferencial y conjuntos polares , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- M.I. Belishev, A.F. Vakulenko, On algebraic and uniqueness properties of harmonic quaternion fields on 3d manifolds , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Stanislas Ouaro, Noufou Sawadogo, Nonlinear elliptic \(p(u)-\) Laplacian problem with Fourier boundary condition , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Moussa Barro, Sado Traoré, Level sets regularization with application to optimization problems , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Ruchi Arora, Dharmendra Kumar, Ishita Jhamb, Avina Kaur Narang, Mathematical Modeling of Chikungunya Dynamics: Stability and Simulation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
<< < 16 17 18 19 20 21 22 23 24 25 26 27 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Manoj Bhardwaj et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










