Note on the \(F_{0}\)-spaces
-
Mahmoud Benkhalifa
mbenkhalifa@sharjah.ac.ae
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.447Abstract
A rationally elliptic space \(X\) is called an \(F_{0}\)-space if its rational cohomology is concentrated in even degrees. The aim of this paper is to characterize such a space in terms of the homotopy groups of its skeletons as well as the rational cohomology of its Postnikov sections.
Keywords
Mathematics Subject Classification:
M. Benkhalifa, “On the group of self-homotopy equivalences of an elliptic space”, Proc. Amer. Math. Soc., vol. 148, no. 6, pp. 2695–2706, 2020, doi: 10.1090/proc/14900.
M. Benkhalifa, “The effect of cell-attachment on the group of self-equivalences of an elliptic space”, Michigan Math. J., vol. 71, no. 3, pp. 611–617, 2022, doi: 10.1307/mmj/20195840.
M. Benkhalifa, “On the Euler-Poincaré characteristics of a simply connected rationally elliptic CW-complex”, J. Homotopy Relat. Struct., vol. 17, no. 2, pp. 163–174, 2022, doi: 10.1007/s40062-022-00301-2.
M. Benkhalifa, “The group of self-homotopy equivalences of a rational space cannot be a free abelian group”, J. Math. Soc. Japan, vol. 75, no. 1, pp. 113–117, 2023, doi: 10.2969/jmsj/87158715.
M. Benkhalifa, “On the characterization of F0-spaces”, Commun. Korean Math. Soc., vol. 38, no. 2, pp. 643–648, 2023, doi: 10.4134/CKMS.c220179.
M. Benkhalifa, “On the group of self-homotopy equivalence of a formal F0-space”, Bollettino dell’Unione Matematica Italiana, vol. 16, no. 3, pp. 641–647, 2023, doi: 10.1007/s40574-023- 00354-y.
M. Benkhalifa, “On the group of self-homotopy equivalences of an almost formal space”, Quaest. Math., vol. 46, no. 5, pp. 855–862, 2023, doi: 10.2989/16073606.2022.2044405.
Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, ser. Graduate Texts in Mathematics. New York, USA: Springer-Verlag, 2001, vol. 205, doi: 10.1007/978-1-4613- 0105-9.
Similar Articles
- Martin Moskowitz, Symmetric Spaces of Noncompact type , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Qikeng Lu, Global Solutions of Yang-Mills Equation , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Jerome Yen, Ferenc Szidarovszky, Dynamic Negotiations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Ioannis K. Argyros, An improved convergence and complexity analysis for the interpolatory Newton method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Djairo G. de Figueiredo, An Invitation to Semilinear Elliptic Equations , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Gian-Italo Bischi, Michael Kopel, Long Run Evolution, Path Dependence and Global Properties of Dynamic Games: A Tutorial , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Vicente Muñoz, Leray-Serre Spectral Sequence for Quasi-Fibrations , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
<< < 4 5 6 7 8 9 10 11 12 13 14 15 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M. Benkhalifa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.