Note on the \(F_{0}\)-spaces
-
Mahmoud Benkhalifa
mbenkhalifa@sharjah.ac.ae
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.447Abstract
A rationally elliptic space \(X\) is called an \(F_{0}\)-space if its rational cohomology is concentrated in even degrees. The aim of this paper is to characterize such a space in terms of the homotopy groups of its skeletons as well as the rational cohomology of its Postnikov sections.
Keywords
Mathematics Subject Classification:
M. Benkhalifa, “On the group of self-homotopy equivalences of an elliptic space”, Proc. Amer. Math. Soc., vol. 148, no. 6, pp. 2695–2706, 2020, doi: 10.1090/proc/14900.
M. Benkhalifa, “The effect of cell-attachment on the group of self-equivalences of an elliptic space”, Michigan Math. J., vol. 71, no. 3, pp. 611–617, 2022, doi: 10.1307/mmj/20195840.
M. Benkhalifa, “On the Euler-Poincaré characteristics of a simply connected rationally elliptic CW-complex”, J. Homotopy Relat. Struct., vol. 17, no. 2, pp. 163–174, 2022, doi: 10.1007/s40062-022-00301-2.
M. Benkhalifa, “The group of self-homotopy equivalences of a rational space cannot be a free abelian group”, J. Math. Soc. Japan, vol. 75, no. 1, pp. 113–117, 2023, doi: 10.2969/jmsj/87158715.
M. Benkhalifa, “On the characterization of F0-spaces”, Commun. Korean Math. Soc., vol. 38, no. 2, pp. 643–648, 2023, doi: 10.4134/CKMS.c220179.
M. Benkhalifa, “On the group of self-homotopy equivalence of a formal F0-space”, Bollettino dell’Unione Matematica Italiana, vol. 16, no. 3, pp. 641–647, 2023, doi: 10.1007/s40574-023- 00354-y.
M. Benkhalifa, “On the group of self-homotopy equivalences of an almost formal space”, Quaest. Math., vol. 46, no. 5, pp. 855–862, 2023, doi: 10.2989/16073606.2022.2044405.
Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory, ser. Graduate Texts in Mathematics. New York, USA: Springer-Verlag, 2001, vol. 205, doi: 10.1007/978-1-4613- 0105-9.
Similar Articles
- Youssef N Raffoul, Stability and boundedness in nonlinear and neutral difference equations using new variation of parameters formula and fixed point theory , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- T.M.M. Sow, A new iterative method based on the modified proximal-point algorithm for finding a common null point of an infinite family of accretive operators in Banach spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- A. Kamal, T.I. Yassen, D-metric Spaces and Composition Operators Between Hyperbolic Weighted Family of Function Spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Vediyappan Govindan, Choonkil Park, Sandra Pinelas, Themistocles M. Rassias, Hyers-Ulam stability of an additive-quadratic functional equation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- G. S. Saluja, Fixed point theorems on cone \(S\)-metric spaces using implicit relation , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- A. Kaboré, S. Ouaro, Anisotropic problem with non-local boundary conditions and measure data , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Chia-chi Tung, Pier Domenico Lamberti, On Rellich‘s Lemma, the Poincaré inequality, and Friedrichs extension of an operator on complex spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- M. Haviar, S. Kurtulík, A new class of graceful graphs: \(k\)-enriched fan graphs and their characterisations , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- K. Rajendra Prasad, Mahammad Khuddush, K. V. Vidyasagar, Infinitely many positive solutions for an iterative system of singular BVP on time scales , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
<< < 14 15 16 17 18 19 20 21 22 23 24 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M. Benkhalifa

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.