Quotient rings satisfying some identities
-
Mohammadi El Hamdaoui
mathsup2011@gmail.com
-
Abdelkarim Boua
abdelkarimboua@yahoo.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.455Abstract
This paper investigates the commutativity of the quotient ring \(\mathcal{R}/P\), where \(\mathcal{R}\) is an associative ring with a prime ideal \(P\), and the possibility of forms of derivations satisfying certain algebraic identities on \(\mathcal{R}\). We provide some results for strong commutativity-preserving derivations of prime rings.
Keywords
Mathematics Subject Classification:
A. Ali, M. Yasen, and M. Anwar, “Strong commutativity preserving mappings on semiprime rings,” Bull. Korean Math. Soc., vol. 43, no. 4, pp. 711–713, 2006, doi: 10.4134/BKMS.2006.43.4.711.
F. A. A. Almahdi, A. Mamouni, and M. Tamekkante, “A generalization of Posner’s Theorem on derivations in rings,” Indian J. Pure Appl. Math., vol. 51, no. 1, pp. 187–194, 2020, doi: https://doi.org/10.1007/s13226-020-0394-8.
K. I. Beidar, W. S. Martindale, III, and A. V. Mikhalev, Rings with generalized identities, ser. Monographs and Textbooks in Pure and Applied Mathematics. New York, USA: Marcel Dekker, Inc., 1996, vol. 196.
H. E. Bell and M. N. Daif, “On commutativity and strong commutativity-preserving maps,” Canad. Math. Bull., vol. 37, no. 4, pp. 443–447, 1994, doi: https://doi.org/10.4153/CMB- 1994-064-x.
H. E. Bell and G. Mason, “On derivations in near-rings and rings,” Math. J. Okayama Univ., vol. 34, pp. 135–144, 1992.
M. Brešar, “Semiderivations of prime rings,” Proc. Amer. Math. Soc., vol. 108, no. 4, pp. 859–860, 1990, doi: 10.2307/2047937.
M. Brešar, “On the distance of the composition of two derivations to the generalized derivations,” Glasgow Math. J., vol. 33, no. 1, pp. 89–93, 1991, doi: 10.1017/S0017089500008077.
M. Brešar, “Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings,” Trans. Amer. Math. Soc., vol. 335, no. 2, pp. 525–546, 1993, doi: 10.2307/2154392.
M. Brešar and C. R. Miers, “Strong commutativity preserving maps of semiprime rings,” Canad. Math. Bull., vol. 37, no. 4, pp. 457–460, 1994, doi: 10.4153/CMB-1994-066-4.
Q. Deng and M. Ashraf, “On strong commutativity preserving mappings,” Results Math., vol. 30, no. 3-4, pp. 259–263, 1996, doi: 10.1007/BF03322194.
T.-K. Lee and T.-L. Wong, “Nonadditive strong commutativity preserving maps,” Comm. Algebra, vol. 40, no. 6, pp. 2213–2218, 2012, doi: 10.1080/00927872.2011.578287.
J.-S. Lin and C.-K. Liu, “Strong commutativity preserving maps on Lie ideals,” Linear Algebra Appl., vol. 428, no. 7, pp. 1601–1609, 2008, doi: 10.1016/j.laa.2007.10.006.
J.-S. Lin and C.-K. Liu, “Strong commutativity preserving maps in prime rings with involution,” Linear Algebra Appl., vol. 432, no. 1, pp. 14–23, 2010, doi: 10.1016/j.laa.2009.06.036.
C.-K. Liu, “Strong commutativity preserving generalized derivations on right ideals,” Monatsh. Math., vol. 166, no. 3-4, pp. 453–465, 2012, doi: 10.1007/s00605-010-0281-1.
C.-K. Liu and P.-K. Liau, “Strong commutativity preserving generalized derivations on Lie ideals,” Linear Multilinear Algebra, vol. 59, no. 8, pp. 905–915, 2011, doi: 10.1080/03081087.2010.535819.
J. Ma, X. W. Xu, and F. W. Niu, “Strong commutativity-preserving generalized derivations on semiprime rings,” Acta Math. Sin. (Engl. Ser.), vol. 24, no. 11, pp. 1835–1842, 2008, doi: 10.1007/s10114-008-7445-0.
E. C. Posner, “Derivations in prime rings,” Proc. Amer. Math. Soc., vol. 8, pp. 1093–1100, 1957, doi: 10.2307/2032686.
M. S. Samman, “On strong commutativity-preserving maps,” Int. J. Math. Math. Sci., vol. 2005, no. 6, pp. 917–923, 2005, doi: 10.1155/IJMMS.2005.917.
P. Šemrl, “Commutativity preserving maps”, Linear Algebra Appl., vol. 429, no. 5-6, pp. 1051– 1070, 2008, doi: 10.1016/j.laa.2007.05.006.
Similar Articles
- Ìnsal Tekir, Suat Koç, Rashid Abu-Dawwas, Eda Yıldız, Graded weakly 1-absorbing prime ideals , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Aisha Jabeen, Bruno L. M. Ferreira, Multiplicative maps on generalized \(n\)-matrix rings , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Irena Kosi-Ulbl, Joso Vukman, An identity related to derivations of standard operator algebras and semisimple H∗ -algebras , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Peter Danchev, Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- M. Arunkumar, Generalized Ulam - Hyers Stability of Derivations of a AQ - Functional Equation , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- M. I. Jinnah, Shine C. Mathew, Ideal based graph structures for commutative rings , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Nejc Sirovnik, On certain functional equation in semiprime rings and standard operator algebras , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Joso Vukman, Irena Kosi-Ulbl, On Two-Sided Centralizers of Rings and Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Benjamín Castillo, Algunas extensiones infinitas de \(\mathbb{Q}\) con la propiedad de Bogomolov , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M. E. Hamdaoui et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.