On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial
-
Abhijit Banerjee
abanerjeekal@gmail.com
-
Arpita Kundu
arpitakundu.math.ku@gmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2503.497Abstract
In this article, we have mainly focused on the uniqueness problem of an \(L\)-function \(\mathcal{L}\) with an \(L\)-function or a meromorphic function \(f\) under the condition of sharing the sets, generated from the zero set of some strong uniqueness polynomials. We have introduced two new definitions, which extend two existing important definitions of URSM and UPM in the literature and the same have been used to prove one of our main results. As an application of the result, we have exhibited a much improved and extended version of a recent result of Khoai-An-Phuong [23]. Our remaining results are about the uniqueness of \(L\)-function under weighted sharing of sets generated from the zeros of a suitable strong uniqueness polynomial, which improve and extend some results in [12].
Keywords
Mathematics Subject Classification:
T. T. H. An, J. T.-Y. Wang, and P.-M. Wong, “Strong uniqueness polynomials: the complex case,” Complex Var. Theory Appl., vol. 49, no. 1, pp. 25–54, 2004, doi: 10.1080/02781070310001634601.
A. Banerjee and S. Maity, “Further investigations on a unique range set under weight 0 and 1,” Carpathian Math. Publ., vol. 14, no. 2, pp. 504–512, 2022.
A. Banerjee, “Uniqueness of meromorphic functions sharing two sets with finite weight II,” Tamkang J. Math., vol. 41, no. 4, pp. 379–392, 2010.
A. Banerjee and I. Lahiri, “A uniqueness polynomial generating a unique range set and vice versa,” Comput. Methods Funct. Theory, vol. 12, no. 2, pp. 527–539, 2012, doi: 10.1007/BF03321842.
A. Banerjee and S. Mallick, “On the characterisations of a new class of strong uniqueness polynomials generating unique range sets,” Comput. Methods Funct. Theory, vol. 17, no. 1, pp. 19–45, 2017, doi: 10.1007/s40315-016-0174-y.
H. Fujimoto, “On uniqueness of meromorphic functions sharing finite sets,” Amer. J. Math., vol. 122, no. 6, pp. 1175–1203, 2000.
H. Fujimoto, “On uniqueness polynomials for meromorphic functions,” Nagoya Math. J., vol. 170, pp. 33–46, 2003, doi: 10.1017/S0027763000008527.
F. Gross, “Factorization of meromorphic functions and some open problems,” in Complex analysis (Proc. Conf., Univ. Kentucky, Lexington, Ky., 1976), ser. Lecture Notes in Math. Springer, Berlin-New York, 1977, vol. 599, pp. 51–67.
W. K. Hayman, Meromorphic functions, ser. Oxford Mathematical Monographs. Clarendon Press, Oxford, 1964.
P.-C. Hu and B. Q. Li, “A simple proof and strengthening of a uniqueness theorem for L- functions,” Canad. Math. Bull., vol. 59, no. 1, pp. 119–122, 2016, doi: 10.4153/CMB-2015- 045-1.
H. H. Khoai, V. H. An, and L. Q. Ninh, “Value-sharing and uniqueness for L-functions,” Ann. Polon. Math., vol. 126, no. 3, pp. 265–278, 2021, doi: 10.4064/ap201030-17-3.
H. H. Khoai and V. H. An, “Determining an L-function in the extended Selberg class by its preimages of subsets,” Ramanujan J., vol. 58, no. 1, pp. 253–267, 2022, doi: 10.1007/s11139- 021-00483-y.
H. H. Khoai, V. H. An, and N. D. Phuong, “On value distribution of L-functions sharing finite sets with meromorphic functions,” Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 66(114), no. 3, pp. 265–280, 2023.
I. Lahiri, “Weighted value sharing and uniqueness of meromorphic functions,” Complex Variables Theory Appl., vol. 46, no. 3, pp. 241–253, 2001, doi: 10.1080/17476930108815411.
P. Li and C.-C. Yang, “Some further results on the unique range sets of meromorphic functions,” Kodai Math. J., vol. 18, no. 3, pp. 437–450, 1995, doi: 10.2996/kmj/1138043482.
P. Lin and W. Lin, “Value distribution of L-functions concerning sharing sets,” Filomat, vol. 30, no. 14, pp. 3795–3806, 2016, doi: 10.2298/FIL1614795L.
A. Z. Mohon’ko, “The Nevanlinna characteristics of certain meromorphic functions,” Teor. Funkcii Funkcional. Anal. i Priložen., no. 14, pp. 83–87, 1971.
A. Selberg, “Old and new conjectures and results about a class of Dirichlet series,” in Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989). Univ. Salerno, Salerno, 1992, pp. 367–385.
J. Steuding, Value-distribution of L-functions, ser. Lecture Notes in Mathematics. Springer, Berlin, 2007, vol. 1877.
C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, ser. Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2003, vol. 557, doi: 10.1007/978-94-017-3626-8.
H.-X. Yi, “The reduced unique range sets for entire or meromorphic functions,” Complex Variables Theory Appl., vol. 32, no. 3, pp. 191–198, 1997, doi: 10.1080/17476939708814990.
Q.-Q. Yuan, X.-M. Li, and H.-X. Yi, “Value distribution of L-functions and uniqueness questions of F. Gross,” Lith. Math. J., vol. 58, no. 2, pp. 249–262, 2018, doi: 10.1007/s10986-018- 9390-7.
- 09/106(0200)/2019-EMR-I
Most read articles by the same author(s)
- Abhijit Banerjee, Some uniqueness results on meromorphic functions sharing three sets II , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
Similar Articles
- Ajay Kumar, Ekta Tamrakar, Inertial algorithm for solving split inclusion problem in Banach spaces , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Gábor Czédli, Minimum-sized generating sets of the direct powers of free distributive lattices , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Satyam Narayan Srivastava, Smita Pati, John R. Graef, Alexander Domoshnitsky, Seshadev Padhi, Lyapunov-type inequalities for higher-order Caputo fractional differential equations with general two-point boundary conditions , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- René Erlín Castillo, Héctor Camilo Chaparro, Julio César Ramos-Fernández, \(L_p\)-boundedness of the Laplace transform , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Mahdi Zreik, On the approximation of the δ-shell interaction for the 3-D Dirac operator , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
<< < 14 15 16 17 18 19 20 21 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 A. Banerjee et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.