Frame’s Types of Inequalities and Stratification
-
Branko Malešević
malesevic@etf.rs
-
Dimitrije Jovanović
dickica@hotmail.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.001Abstract
In this paper we examine some inequalities of Frame's type on the interval \((0,\pi/2)\). By observing this domain we simply obtain the results using the appropriate families of stratified functions and MTP - Mixed Trigonometric Polynomials. Additionally, from those families we specify a minimax approximant as a function with some optimal properties.
Keywords
Mathematics Subject Classification:
“Queries—replies,” Mathematical Tables and other Aids to Computation, vol. 3, no. 28, pp. 561–563, 1949.
M. J. Cloud, B. C. Drachman, and L. P. Lebedev, Inequalities. With applications to engineering, 2nd ed. Springer, Cham, 2014, doi: 10.1007/978-3-319-05311-0.
N. Cutland, Computability. An introduction to recursive function theory. Cambridge University Press, Cambridge-New York, 1980.
B. Dong, B. Yu, and Y. Yu, “A symmetric homotopy and hybrid polynomial system solving method for mixed trigonometric polynomial systems,” Math. Comp., vol. 83, no. 288, pp. 1847–1868, 2014, doi: 10.1090/S0025-5718-2013-02763-9.
G. T. Freitas De Abreu, “Jensen-Cotes upper and lower bounds on the Gaussian Q-function and related functions”, IEEE Transactions on Communications, vol. 57, no. 11, pp. 3328–3338, 2009, doi: 10.1109/TCOMM.2009.11.080479.
Y. Lv, G. Wang, and Y. Chu, “A note on Jordan type inequalities for hyperbolic functions,” Appl. Math. Lett., vol. 25, no. 3, pp. 505–508, 2012, doi: 10.1016/j.aml.2011.09.046.
B. Malešević, T. Lutovac, and B. Banjac, “One method for proving some classes of exponential analytical inequalities,” Filomat, vol. 32, no. 20, pp. 6921–6925, 2018, doi: 10.2298/fil1820921m.
B. Malešević and M. Makragić, “A method for proving some inequalities on mixed trigonometric polynomial functions,” J. Math. Inequal., vol. 10, no. 3, pp. 849–876, 2016, doi: 10.7153/jmi-10-69.
B. Malešević and B. Mihailović, “A minimax approximant in the theory of analytic inequalities,” Appl. Anal. Discrete Math., vol. 15, no. 2, pp. 486–509, 2021, doi: 10.2298/aadm210511032m.
B. Malešević, M. Nenezić, L. Zhu, B. Banjac and M. Petrović, “Some new estimates of precision of Cusa-Huygens and Huygens approximations,” Appl. Anal. Discrete Math., vol. 15, no. 1, pp. 243–259, 2021, doi: 10.2298/aadm190904055m.
D. S. Mitrinović, Analytic inequalities, ser. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York-Berlin, 1970, vol. 165.
G. Rahmatollahi and G. Abreu, “Closed-form hop-count distributions in random networks with arbitrary routing,” IEEE Transactions on Communications, vol. 60, no. 2, pp. 429–444, 2012, doi: 10.1109/TCOMM.2012.010512.110125.
T. Sch., “Literaturberichte: Konstruktionen und Approximationen,” Monatsh. Math. Phys., vol. 23, no. 1, p. A61, 1912, doi: 10.1007/BF01707814.
P. C. Sturm, Mémoire sur la résolution des équations numériques. Basel: Birkhäuser Basel, 2009, pp. 345–390, doi: 10.1007/978-3-7643-7990-2_29.
Z.-H. Yang, Y.-M. Chu, Y.-Q. Song and Y.-M. Li, “A sharp double inequality for trigonometric functions and its applications,” Abstr. Appl. Anal., 2014, Art. ID 592085, doi: 10.1155/2014/592085.
Z.-H. Yang, Y.-M. Chu, and X.-H. Zhang, “Sharp Cusa type inequalities with two parameters and their applications,” Appl. Math. Comput., vol. 268, pp. 1177–1198, 2015, doi: 10.1016/j.amc.2015.07.025.
Z.-H. Yang, Y.-L. Jiang, Y.-Q. Song, and Y.-M. Chu, “Sharp inequalities for trigonometric functions,” Abstr. Appl. Anal., 2014, Art. ID 601839, doi: 10.1155/2014/601839.
T.-H. Zhao and Y.-M. Chu, “Some general Wilker-Huygens inequalities,” Appl. Anal. Discrete Math., vol. 16, no. 2, pp. 400–426, 2022.
L. Zhu, “On Frame’s inequalities,” J. Inequal. Appl., 2018, Art. ID 94, doi: 10.1186/s13660- 018-1687-x.
L. Zhu and B. Malešević, “New inequalities of Huygens-type involving tangent and sine functions,” Hacet. J. Math. Stat., vol. 52, no. 1, pp. 36–61, 2023, doi: 10.1007/s00182-022-00809-0.
- Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Number: 451-03-65/2024-03/200103)
Similar Articles
- G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Frank Hansen, Convex Matrix Functions , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- George A. Anastassiou, Univariate right fractional Ostrowski inequalities , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Naoyuki Koike, Mean curvature flow of certain kind of isoparametric foliations on non-compact symmetric spaces , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- Tomonari Suzuki, Browder Convergence and Mosco Convergence for Families of Nonexpansive Mappings , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- F. Brackx, H. De Schepper, The Hilbert Transform on a Smooth Closed Hypersurface , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Nenad Ujevi´c, Error Inequalities for a Taylor-like Formula , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Shigeki Matsutani, Relations of al Functions over Subvarieties in a Hyperelliptic Jacobian , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
- Nguyen Buong, Convergence rates in regularization for ill-posed variational inequalities , CUBO, A Mathematical Journal: Vol. 7 No. 3 (2005): CUBO, A Mathematical Journal
<< < 6 7 8 9 10 11 12 13 14 15 16 17 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Malešević et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.