Families of skew linear harmonic Euler sums involving some parameters
-
Anthony Sofo
anthony.sofo@vu.edu.au
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.075Abstract
In this study we investigate a family of skew linear harmonic Euler sums involving some free parameters. Our analysis involves using the properties of the polylogarithm function, commonly referred to as the Bose-Einstein integral. A reciprocity property is utilized to highlight an explicit representation for a particular skew harmonic linear Euler sum. A number of examples are also given which highlight the theorems. This work generalizes some results in the published literature and introduces some new results.
Keywords
Mathematics Subject Classification:
H. Alzer and J. Choi, “Four parametric linear Euler sums,” J. Math. Anal. Appl., vol. 484, no. 1, 2020, Art. ID 123661, doi: 10.1016/j.jmaa.2019.123661.
D. Borwein, J. M. Borwein, and R. Girgensohn, “Explicit evaluation of Euler sums,” Proc. Edinburgh Math. Soc. (2), vol. 38, no. 2, pp. 277–294, 1995, doi: 10.1017/S0013091500019088.
J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, “Central binomial sums, multiple Clausen values, and zeta values,” Experiment. Math., vol. 10, no. 1, pp. 25–34, 2001, doi: 10.1080/10586458.2001.10504426.
W. Chu, “Infinite series on quadratic skew harmonic numbers,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 117, no. 2, 2023, Art. ID 75, doi: 10.1007/s13398-023- 01407-9.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.
P. Flajolet and B. Salvy, “Euler sums and contour integral representations,” Experiment. Math., vol. 7, no. 1, pp. 15–35, 1998, doi: 10.1080/10586458.1998.10504356.
L. Lewin, Polylogarithms and associated functions. North-Holland Publishing Co., New York- Amsterdam, 1981.
L. A. Medina and V. H. Moll, “The integrals in Gradshteyn and Ryzhik part 27: More logarithmic examples,” Scientia, vol. 26, pp. 31–47, 2015.
N. Nielsen, Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten. Chelsea Publishing Co., New York, 1965.
A. S. Nimbran, P. Levrie, and A. Sofo, “Harmonic-binomial Euler-like sums via expansions of (arcsinx)p,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 116, no. 1, 2022, Art. ID 23, doi: 10.1007/s13398-021-01156-7.
A. Sofo, “General order Euler sums with multiple argument,” J. Number Theory, vol. 189, pp. 255–271, 2018, doi: 10.1016/j.jnt.2017.12.006.
A. Sofo, “General order Euler sums with rational argument,” Integral Transforms Spec. Funct., vol. 30, no. 12, pp. 978–991, 2019, doi: 10.1080/10652469.2019.1643851.
A. Sofo and J. Choi, “Extension of the four Euler sums being linear with parameters and series involving the zeta functions,” J. Math. Anal. Appl., vol. 515, no. 1, 2022, Art. ID 126370, doi: 10.1016/j.jmaa.2022.126370.
A. Sofo and A. S. Nimbran, “Euler-like sums via powers of log, arctan and arctanh functions,” Integral Transforms Spec. Funct., vol. 31, no. 12, pp. 966–981, 2020, doi: 10.1080/10652469.2020.1765775.
H. M. Srivastava, M. A. Chaudhry, A. Qadir, and A. Tassaddiq, “Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions,” Russ. J. Math. Phys., vol. 18, no. 1, pp. 107–121, 2011, doi: 10.1134/S1061920811010110.
H. M. Srivastava and J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001, doi: 10.1007/978-94-015-9672-5.
H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals. Elsevier, Inc., Amsterdam, 2012, doi: 10.1016/B978-0-12-385218-2.00001-3.
S. M. Stewart, “Explicit expressions for some linear Euler-type sums containing harmonic and skew-harmonic numbers,” J. Class. Anal., vol. 20, no. 2, pp. 79–101, 2022, doi: 10.7153/jca- 2022-20-07.
Similar Articles
- Zvonko Cerin, Squares in Euler triples from Fibonacci and Lucas numbers , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Maja Fosner, Benjamin Marcen, Nejc Sirovnik, On centralizers of standard operator algebras with involution , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- G. Suresh, Ch Vasavi, T.S. Rao, M.S.N. Murty, Existence of Ψ-Bounded Solutions for Linear Matrix Difference Equations on Z+ , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Saïd Hilout, On the solution of generalized equations and variational inequalities , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- J. Blot, D. Pennequin, Gaston M. N‘Gu´er´ekata, Existence and Uniqueness of Pseudo Almost Automorphic Solutions to Some Classes of Partial Evolution Equations , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: In Press
- Juliana Conceição Precioso, A Family of Stationary Solutions to the Euler Equations and Generalized Solutions , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Volodymyr Sushch, Green Function for a Two-Dimensional Discrete Laplace-Beltrami Operator , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Sofo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.