Families of skew linear harmonic Euler sums involving some parameters
-
Anthony Sofo
anthony.sofo@vu.edu.au
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2601.075Abstract
In this study we investigate a family of skew linear harmonic Euler sums involving some free parameters. Our analysis involves using the properties of the polylogarithm function, commonly referred to as the Bose-Einstein integral. A reciprocity property is utilized to highlight an explicit representation for a particular skew harmonic linear Euler sum. A number of examples are also given which highlight the theorems. This work generalizes some results in the published literature and introduces some new results.
Keywords
Mathematics Subject Classification:
H. Alzer and J. Choi, “Four parametric linear Euler sums,” J. Math. Anal. Appl., vol. 484, no. 1, 2020, Art. ID 123661, doi: 10.1016/j.jmaa.2019.123661.
D. Borwein, J. M. Borwein, and R. Girgensohn, “Explicit evaluation of Euler sums,” Proc. Edinburgh Math. Soc. (2), vol. 38, no. 2, pp. 277–294, 1995, doi: 10.1017/S0013091500019088.
J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, “Central binomial sums, multiple Clausen values, and zeta values,” Experiment. Math., vol. 10, no. 1, pp. 25–34, 2001, doi: 10.1080/10586458.2001.10504426.
W. Chu, “Infinite series on quadratic skew harmonic numbers,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 117, no. 2, 2023, Art. ID 75, doi: 10.1007/s13398-023- 01407-9.
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher transcendental functions. Vols. I, II. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953.
P. Flajolet and B. Salvy, “Euler sums and contour integral representations,” Experiment. Math., vol. 7, no. 1, pp. 15–35, 1998, doi: 10.1080/10586458.1998.10504356.
L. Lewin, Polylogarithms and associated functions. North-Holland Publishing Co., New York- Amsterdam, 1981.
L. A. Medina and V. H. Moll, “The integrals in Gradshteyn and Ryzhik part 27: More logarithmic examples,” Scientia, vol. 26, pp. 31–47, 2015.
N. Nielsen, Die Gammafunktion. Band I. Handbuch der Theorie der Gammafunktion. Band II. Theorie des Integrallogarithmus und verwandter Transzendenten. Chelsea Publishing Co., New York, 1965.
A. S. Nimbran, P. Levrie, and A. Sofo, “Harmonic-binomial Euler-like sums via expansions of (arcsinx)p,” Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, vol. 116, no. 1, 2022, Art. ID 23, doi: 10.1007/s13398-021-01156-7.
A. Sofo, “General order Euler sums with multiple argument,” J. Number Theory, vol. 189, pp. 255–271, 2018, doi: 10.1016/j.jnt.2017.12.006.
A. Sofo, “General order Euler sums with rational argument,” Integral Transforms Spec. Funct., vol. 30, no. 12, pp. 978–991, 2019, doi: 10.1080/10652469.2019.1643851.
A. Sofo and J. Choi, “Extension of the four Euler sums being linear with parameters and series involving the zeta functions,” J. Math. Anal. Appl., vol. 515, no. 1, 2022, Art. ID 126370, doi: 10.1016/j.jmaa.2022.126370.
A. Sofo and A. S. Nimbran, “Euler-like sums via powers of log, arctan and arctanh functions,” Integral Transforms Spec. Funct., vol. 31, no. 12, pp. 966–981, 2020, doi: 10.1080/10652469.2020.1765775.
H. M. Srivastava, M. A. Chaudhry, A. Qadir, and A. Tassaddiq, “Some extensions of the Fermi-Dirac and Bose-Einstein functions with applications to the family of the zeta and related functions,” Russ. J. Math. Phys., vol. 18, no. 1, pp. 107–121, 2011, doi: 10.1134/S1061920811010110.
H. M. Srivastava and J. Choi, Series associated with the zeta and related functions. Kluwer Academic Publishers, Dordrecht, 2001, doi: 10.1007/978-94-015-9672-5.
H. M. Srivastava and J. Choi, Zeta and q-Zeta functions and associated series and integrals. Elsevier, Inc., Amsterdam, 2012, doi: 10.1016/B978-0-12-385218-2.00001-3.
S. M. Stewart, “Explicit expressions for some linear Euler-type sums containing harmonic and skew-harmonic numbers,” J. Class. Anal., vol. 20, no. 2, pp. 79–101, 2022, doi: 10.7153/jca- 2022-20-07.
Similar Articles
- Juliana Conceição Precioso, A Family of Stationary Solutions to the Euler Equations and Generalized Solutions , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Georgi Raikov, Spectral Shift Function for Schr¨odinger Operators in Constant Magnetic Fields , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Shuichi Otake, Tony Shaska, Some remarks on the non-real roots of polynomials , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Xu You, Approximation and inequalities for the factorial function related to the Burnside’s formula , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Abhijit Banerjee, Arpita Kundu, On uniqueness of \(L\)-functions in terms of zeros of strong uniqueness polynomial , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Feng Qi, The extended mean values: Definition, Properties, Monotonicities, Comparison, Convexities, Generalizations, and Applications , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Jan Andres, Karel Pastor, Pavla Snyrychov´a, Simple Fixed Point Theorems on Linear Continua , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 A. Sofo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.