Some norm inequalities for accretive Hilbert space operators
-
Baharak Moosavi
baharak_moosavie@yahoo.com
-
Mohsen Shah Hosseini
mohsen_shahhosseini@yahoo.com
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2602.327Abstract
New norm inequalities for accretive operators on Hilbert space are given. Among other inequalities, we prove that if \(A, B \in \mathbb{B(H)}\) and \(B\) is self-adjoint and also \(C_{m,M}(iAB)\) is accretive, then
\begin{eqnarray*}
\frac{4 \sqrt{Mm}}{M+m} \Vert AB\Vert \leq \omega(AB-BA^*),\end{eqnarray*}
where \(M\) and \(m\) are positive real numbers with \(M > m\) and \(C_{m,M}(A) = (A^* - mI)(MI - A)\). Also, we show that if \(C_{m,M}(A)\) is accretive and \((M-m) \leq k \Vert A \Vert\), then
\begin{eqnarray*}
\omega(AB) \leq ( 2 + k)\omega(A)\omega(B).\end{eqnarray*}
Keywords
Mathematics Subject Classification:
S. S. Dragomir, “Reverse inequalities for the numerical radius of linear operators in Hilbert spaces,” Bull. Austral. Math. Soc., vol. 73, no. 2, pp. 255–262, 2006, doi: 10.1017/S0004972700038831.
S. S. Dragomir, “Some inequalities for the norm and the numerical radius of linear operators in Hilbert spaces,” Tamkang J. Math., vol. 39, no. 1, pp. 1–7, 2008.
S. S. Dragomir, Inequalities for the numerical radius of linear operators in Hilbert spaces, ser. SpringerBriefs in Mathematics. Springer, Cham, 2013, doi: 10.1007/978-3-319-01448-7.
C. K. Fong and J. A. R. Holbrook, “Unitarily invariant operator norms,” Canadian J. Math., vol. 35, no. 2, pp. 274–299, 1983, doi: 10.4153/CJM-1983-015-3.
I. H. Gümüş, H. R. Moradi, and M. Sababheh, “Operator inequalities via accretive transforms,” Hacet. J. Math. Stat., vol. 53, no. 1, pp. 40–52, 2024, doi: 10.15672/hujms.1160533.
J. A. R. Holbrook, “Multiplicative properties of the numerical radius in operator theory,” J. Reine Angew. Math., vol. 237, pp. 166–174, 1969, doi: 10.1515/crll.1969.237.166.
F. Kittaneh, “Numerical radius inequalities for Hilbert space operators,” Studia Math., vol. 168, no. 1, pp. 73–80, 2005, doi: 10.4064/sm168-1-5.
B. Moosavi and M. Shah Hosseini, “New lower bound for numerical radius for off-diagonal 2 × 2 matrices,” J. Linear Topol. Algebra, vol. 13, no. 1, pp. 13–18, 2024, doi: 10.30495/jlta.2024.2002723.1602.
E. Nikzat and M. E. Omidvar, “Refinements of numerical radius inequalities using the Kantorovich ratio,” Concr. Oper., vol. 9, no. 1, pp. 70–74, 2022, doi: 10.1515/conop-2022-0128.
M. Shah Hosseini and B. Moosavi, “Some numerical radius inequalities for products of Hilbert space operators,” Filomat, vol. 33, no. 7, pp. 2089–2093, 2019, doi: 10.2298/fil1907089h.
M. Shah Hosseini, B. Moosavi, and H. R. Moradi, “An alternative estimate for the numerical radius of Hilbert space operators,” Math. Slovaca, vol. 70, no. 1, pp. 233–237, 2020, doi: 10.1515/ms-2017-0346.
M. Shah Hosseini and M. E. Omidvar, “Some inequalities for the numerical radius for Hilbert space operators,” Bull. Aust. Math. Soc., vol. 94, no. 3, pp. 489–496, 2016, doi: 10.1017/S0004972716000514.
J. G. Stampfli, “The norm of a derivation,” Pacific J. Math., vol. 33, pp. 737–747, 1970.
T. Yamazaki, “On upper and lower bounds for the numerical radius and an equality condition,” Studia Math., vol. 178, no. 1, pp. 83–89, 2007, doi: 10.4064/sm178-1-5.
A. Zamani, “Some lower bounds for the numerical radius of Hilbert space operators,” Adv. Oper. Theory, vol. 2, no. 2, pp. 98–107, 2017, doi: 10.22034/aot.1612-1076.
A. Zamani, “A-numerical radius inequalities for semi-Hilbertian space operators,” Linear Algebra Appl., vol. 578, pp. 159–183, 2019, doi: 10.1016/j.laa.2019.05.012.
A. Zamani, M. S. Moslehian, Q. Xu, and C. Fu, “Numerical radius inequalities concerning with algebra norms,” Mediterr. J. Math., vol. 18, no. 2, 2021, Art. ID 38, doi: 10.1007/s00009-020- 01665-6.
Similar Articles
- Ovidiu Furdui, Alina Sîntămărian, Cubic and quartic series with the tail of \(\ln 2\) , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Hamza El-Houari, Lalla Saádia Chadli, Hicham Moussa, On a class of fractional Γ(.)-Kirchhoff-Schrödinger system type , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Xu You, Approximation and inequalities for the factorial function related to the Burnside’s formula , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Sirkka-Liisa Eriksson, Heikki Orelma, A simple construction of a fundamental solution for the extended Weinstein equation , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Shruti A. Kalloli, José Vanterler da C. Sousa, Kishor D. Kucche, On the \(\Phi\)-Hilfer iterative fractional differential equations , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
<< < 27 28 29 30 31 32 33 34 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 B. Moosavi et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











