The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs
-
R. Nithya Raj
nithyarajmaths@gmail.com
-
R. Sundara Rajan
vprsundar@gmail.com
-
İsmail Naci Cangül
cangul@uludag.edu.tr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.475Abstract
The metric dimension of a graph serves a fundamental role in organizing structures of varying dimensions and establishing their foundations through diverse perspectives. Studying symmetric network characteristics like connectedness, diameter, vertex centrality, and complexity depends heavily on the distance parameter. In this article, we explore the exact value for different hexagonal networks' metric dimensions, such as cyclic hexagonal chains, triangular honeycomb mesh, and pencil graphs.
Keywords
Mathematics Subject Classification:
A. Ahmad and A.-N. Al-Hossain Ahmad, “Computation of resolvability parameters for benzenoid hammer graph,” J. Math., 2022, Art. ID 7013832, doi: 10.1155/2022/7013832.
S. Akhter and R. Farooq, “Metric dimension of fullerene graphs,” Electron. J. Graph Theory Appl. (EJGTA), vol. 7, no. 1, pp. 91–103, 2019, doi: 10.5614/ejgta.2019.7.1.7.
S. Akhter and R. Farooq, “Metric dimension of InduBala product of graphs,” Jordan J. Math. Stat., vol. 14, no. 4, pp. 581–605, 2021.
M. Bača, E. T. Baskoro, A. N. M. Salman, S. W. Saputro, and D. Suprijanto, “The metric dimension of regular bipartite graphs,” Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 54, no. 1, pp. 15–28, 2011.
Z. Beerliová, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihaľák, and L. S. Ram, “Network discovery and verification,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 2168–2181, 2006, doi: 10.1109/JSAC.2006.884015.
S. A. U. H. Bokhary, K. Wahid, U. Ali, S. O. Hilali, M. Alhagyan, and A. Gargouri, “Resolvability in subdivision graph of circulant graphs,” Symmetry, vol. 15, no. 4, p. 867, 2023, doi: 10.3390/sym15040867.
G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, “Resolvability in graphs and the metric dimension of a graph,” Discrete Appl. Math., vol. 105, no. 1-3, pp. 99–113, 2000, doi: 10.1016/S0166-218X(00)00198-0.
V. J. A. Cynthia, “Metric dimension of certain mesh derived graphs,” Journal of Computer and Mathematical Sciences, vol. 5, no. 1, pp. 71–77, 2014, doi: 10.20965/jaciii.2023.p0554.
M. R. Garey and D. S. Johnson, Computers and intractability, ser. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, CA, 1979.
F. Harary and R. A. Melter, “On the metric dimension of a graph,” Ars Combin., vol. 2, pp. 191–195, 1976.
A. Khan, G. Haidar, N. Abbas, M. U. I. Khan, A. U. K. Niazi, and A. U. I. Khan, “Metric dimensions of bicyclic graphs,” Mathematics, vol. 11, no. 4, p. 869, 2023, doi: 10.3390/math11040869.
S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in graphs,” Discrete Appl. Math., vol. 70, no. 3, pp. 217–229, 1996, doi: 10.1016/0166-218X(95)00106-2.
A. N. A. Koam, S. Ali, A. Ahmad, M. Azeem, and M. K. Jamil, “Resolving set and exchange property in nanotube,” AIMS Math., vol. 8, no. 9, pp. 20305–20323, 2023, doi: 10.3934/math.20231035.
P. Manuel, B. Rajan, I. Rajasingh, and M. Chris Monica, “Landmarks in torus networks,” J. Discrete Math. Sci. Cryptogr., vol. 9, no. 2, pp. 263–271, 2006, doi: 10.1080/09720529.2006.10698077.
P. Manuel, B. Rajan, I. Rajasingh, and C. Monica M, “On minimum metric dimension of honeycomb networks,” J. Discrete Algorithms, vol. 6, no. 1, pp. 20–27, 2008, doi: 10.1016/j.jda.2006.09.002.
P. Manuel and I. Rajasingh, “Minimum metric dimension of silicate networks,” Ars Combin., vol. 98, pp. 501–510, 2011.
G. M. Megson, X. Yang, and X. Liu, “Honeycomb tori are Hamiltonian,” Inform. Process. Lett., vol. 72, no. 3-4, pp. 99–103, 1999, doi: 10.1016/S0020-0190(99)00141-6.
R. A. Melter and I. Tomescu, “Metric bases in digital geometry,” Computer Vision, Graphics, and Image Processing, vol. 25, no. 1, pp. 113–121, 1984, doi: 10.1016/0734-189X(84)90051-3.
M. F. Nadeem, A. Shabbir, and M. Azeem, “On metric dimension and fault tolerant metric dimension of some chemical structures,” Polycycl. Aromat. Compd., vol. 42, no. 10, pp. 6975–6987, 2022, doi: 10.1080/10406638.2021.1994429.
A. Sebő and E. Tannier, “On metric generators of graphs,” Math. Oper. Res., vol. 29, no. 2, pp. 383–393, 2004, doi: 10.1287/moor.1030.0070.
D. N. S. Simamora and A. N. M. Salman, “The rainbow (vertex) connection number of pencil graphs,” Procedia Computer Science, vol. 74, pp. 138–142, 2015, doi: 10.1016/j.procs.2015.12.128.
S. Soderberg and H. S. Shapiro, “A Combinatory Detection Problem,” Amer. Math. Monthly, vol. 70, no. 10, pp. 1066–1070, 1963, doi: 10.2307/2312835.
X. Zhang, H. M. Bilal, A. ur Rehman, M. Hussain, and Z. Zhang, “On metric dimension of subdivided honeycomb network and aztec diamond network,” Discrete Dynamics in Nature and Society, vol. 2023, pp. 1–9, 2023, doi: 10.1155/2023/7120232.
Similar Articles
- Jyotirmoy Mouley, M. M. Panja, B. N. Mandal, Approximate solution of Abel integral equation in Daubechies wavelet basis , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Valeriu Popa, Weakly Picard pairs of multifunctions , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Fernando Levstein, Carolina Maldonado, Generalized quadrangles and subconstituent algebra , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Donal O‘Regan, Reza Saadati, â„’ -Random and Fuzzy Normed Spaces and Classical Theory , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
- Aris Aghanians, Donal O‘Regan, Kamal Fallahi, Kourosh Nourouzi, Some coupled coincidence point theorems in partially ordered uniform spaces , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- F. Brackx, H. De Schepper, V. Soucek, Differential forms versus multi-vector functions in Hermitean Clifford analysis , CUBO, A Mathematical Journal: Vol. 13 No. 2 (2011): CUBO, A Mathematical Journal
- Jürgen Tolksdorf, Dirac Type Gauge Theories – Motivations and Perspectives , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Peter Topalov, Geodesically compatible metrics. Existence of commutative conservation laws , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Seppo Heikkila, Fixed Point Results for Set-Valued and Single-Valued Mappings in Ordered Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R. N. Raj et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.