The metric dimension of cyclic hexagonal chain honeycomb triangular mesh and pencil graphs
-
R. Nithya Raj
nithyarajmaths@gmail.com
-
R. Sundara Rajan
vprsundar@gmail.com
-
İsmail Naci Cangül
cangul@uludag.edu.tr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.475Abstract
The metric dimension of a graph serves a fundamental role in organizing structures of varying dimensions and establishing their foundations through diverse perspectives. Studying symmetric network characteristics like connectedness, diameter, vertex centrality, and complexity depends heavily on the distance parameter. In this article, we explore the exact value for different hexagonal networks' metric dimensions, such as cyclic hexagonal chains, triangular honeycomb mesh, and pencil graphs.
Keywords
Mathematics Subject Classification:
A. Ahmad and A.-N. Al-Hossain Ahmad, “Computation of resolvability parameters for benzenoid hammer graph,” J. Math., 2022, Art. ID 7013832, doi: 10.1155/2022/7013832.
S. Akhter and R. Farooq, “Metric dimension of fullerene graphs,” Electron. J. Graph Theory Appl. (EJGTA), vol. 7, no. 1, pp. 91–103, 2019, doi: 10.5614/ejgta.2019.7.1.7.
S. Akhter and R. Farooq, “Metric dimension of InduBala product of graphs,” Jordan J. Math. Stat., vol. 14, no. 4, pp. 581–605, 2021.
M. Bača, E. T. Baskoro, A. N. M. Salman, S. W. Saputro, and D. Suprijanto, “The metric dimension of regular bipartite graphs,” Bull. Math. Soc. Sci. Math. Roumanie (N.S.), vol. 54, no. 1, pp. 15–28, 2011.
Z. Beerliová, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihaľák, and L. S. Ram, “Network discovery and verification,” IEEE J. Sel. Areas Commun., vol. 24, no. 12, pp. 2168–2181, 2006, doi: 10.1109/JSAC.2006.884015.
S. A. U. H. Bokhary, K. Wahid, U. Ali, S. O. Hilali, M. Alhagyan, and A. Gargouri, “Resolvability in subdivision graph of circulant graphs,” Symmetry, vol. 15, no. 4, p. 867, 2023, doi: 10.3390/sym15040867.
G. Chartrand, L. Eroh, M. A. Johnson, and O. R. Oellermann, “Resolvability in graphs and the metric dimension of a graph,” Discrete Appl. Math., vol. 105, no. 1-3, pp. 99–113, 2000, doi: 10.1016/S0166-218X(00)00198-0.
V. J. A. Cynthia, “Metric dimension of certain mesh derived graphs,” Journal of Computer and Mathematical Sciences, vol. 5, no. 1, pp. 71–77, 2014, doi: 10.20965/jaciii.2023.p0554.
M. R. Garey and D. S. Johnson, Computers and intractability, ser. A Series of Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, CA, 1979.
F. Harary and R. A. Melter, “On the metric dimension of a graph,” Ars Combin., vol. 2, pp. 191–195, 1976.
A. Khan, G. Haidar, N. Abbas, M. U. I. Khan, A. U. K. Niazi, and A. U. I. Khan, “Metric dimensions of bicyclic graphs,” Mathematics, vol. 11, no. 4, p. 869, 2023, doi: 10.3390/math11040869.
S. Khuller, B. Raghavachari, and A. Rosenfeld, “Landmarks in graphs,” Discrete Appl. Math., vol. 70, no. 3, pp. 217–229, 1996, doi: 10.1016/0166-218X(95)00106-2.
A. N. A. Koam, S. Ali, A. Ahmad, M. Azeem, and M. K. Jamil, “Resolving set and exchange property in nanotube,” AIMS Math., vol. 8, no. 9, pp. 20305–20323, 2023, doi: 10.3934/math.20231035.
P. Manuel, B. Rajan, I. Rajasingh, and M. Chris Monica, “Landmarks in torus networks,” J. Discrete Math. Sci. Cryptogr., vol. 9, no. 2, pp. 263–271, 2006, doi: 10.1080/09720529.2006.10698077.
P. Manuel, B. Rajan, I. Rajasingh, and C. Monica M, “On minimum metric dimension of honeycomb networks,” J. Discrete Algorithms, vol. 6, no. 1, pp. 20–27, 2008, doi: 10.1016/j.jda.2006.09.002.
P. Manuel and I. Rajasingh, “Minimum metric dimension of silicate networks,” Ars Combin., vol. 98, pp. 501–510, 2011.
G. M. Megson, X. Yang, and X. Liu, “Honeycomb tori are Hamiltonian,” Inform. Process. Lett., vol. 72, no. 3-4, pp. 99–103, 1999, doi: 10.1016/S0020-0190(99)00141-6.
R. A. Melter and I. Tomescu, “Metric bases in digital geometry,” Computer Vision, Graphics, and Image Processing, vol. 25, no. 1, pp. 113–121, 1984, doi: 10.1016/0734-189X(84)90051-3.
M. F. Nadeem, A. Shabbir, and M. Azeem, “On metric dimension and fault tolerant metric dimension of some chemical structures,” Polycycl. Aromat. Compd., vol. 42, no. 10, pp. 6975–6987, 2022, doi: 10.1080/10406638.2021.1994429.
A. Sebő and E. Tannier, “On metric generators of graphs,” Math. Oper. Res., vol. 29, no. 2, pp. 383–393, 2004, doi: 10.1287/moor.1030.0070.
D. N. S. Simamora and A. N. M. Salman, “The rainbow (vertex) connection number of pencil graphs,” Procedia Computer Science, vol. 74, pp. 138–142, 2015, doi: 10.1016/j.procs.2015.12.128.
S. Soderberg and H. S. Shapiro, “A Combinatory Detection Problem,” Amer. Math. Monthly, vol. 70, no. 10, pp. 1066–1070, 1963, doi: 10.2307/2312835.
X. Zhang, H. M. Bilal, A. ur Rehman, M. Hussain, and Z. Zhang, “On metric dimension of subdivided honeycomb network and aztec diamond network,” Discrete Dynamics in Nature and Society, vol. 2023, pp. 1–9, 2023, doi: 10.1155/2023/7120232.
Similar Articles
- L. Philo Nithya, Joseph Varghese Kureethara, Independent partial domination , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- G. Divyashree, Venkatesha, Certain results on the conharmonic curvature tensor of \( (\kappa,\mu) \)-contact metric manifolds , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Yadab Chandra Mandal, Shyamal Kumar Hui, Yamabe Solitons with potential vector field as torse forming , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- K. Kalyani, N. Seshagiri Rao, Coincidence point results of nonlinear contractive mappings in partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
- Adrian Petrus¸el, Ioan A. Rus, Marcel Adrian S¸erban, Fixed Points for Operators on Generalized Metric Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
- Yuqun Chen, Hongshan Shao, K.P. Shum, Rosso-Yamane Theorem on PBW Basis of ð‘ˆÔ›(ð´É´) , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- G. S. Saluja, Convergence theorems for generalized asymptotically quasi-nonexpansive mappings in cone metric spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 R. N. Raj et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.