On the approximation of the δ-shell interaction for the 3-D Dirac operator
-
Mahdi Zreik
mahdi.zreik@math.u-bordeaux.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.489Abstract
We consider the three-dimensional Dirac operator coupled with a combination of electrostatic and Lorentz scalar δ-shell interactions. We approximate this operator with general local interactions \(V\). Without any hypotheses of smallness on the potential \(V\), we investigate convergence in the strong resolvent sense to the Dirac Hamiltonian coupled with a δ-shell potential supported on \(S\), a bounded smooth surface. However, the coupling constant depends nonlinearly on the potential \(V\).
Keywords
Mathematics Subject Classification:
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators,” J. Math. Pures Appl. (9), vol. 102, no. 4, pp. 617–639, 2014, doi: 10.1016/j.matpur.2013.12.00.
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators: on the point spectrum and the confinement,” SIAM J. Math. Anal., vol. 47, no. 2, pp. 1044–1069, 2015, doi: 10.1137/14097759X.
N. Arrizabalaga, A. Mas, and L. Vega, “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators,” Comm. Math. Phys., vol. 344, no. 2, pp. 483–505, 2016, doi: 10.1007/s00220-015-2481-y.
J. Behrndt, M. Holzmann, and C. Stelzer, “Approximation of Dirac operators with δ-shell potentials in the norm resolvent sense,” 2023, arXiv:2308.13344.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces,” Math. Nachr., vol. 290, no. 8-9, pp. 1215–1248, 2017, doi: 10.1002/mana.201500498.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions,” Quantum Stud. Math. Found., vol. 6, no. 3, pp. 295–314, 2019, doi: 10.1007/s40509-019-00186-6.
J. Behrndt, M. Holzmann, and M. Tušek, “Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line,” J. Phys. A, vol. 56, no. 4, 2023, Art. ID 045201, doi: 10.1088/1751-8121/acafaf.
B. Cassano, V. Lotoreichik, A. Mas, and M. Tušek, “General δ-shell interactions for the two- dimensional Dirac operator: self-adjointness and approximation,” Rev. Mat. Iberoam., vol. 39, no. 4, pp. 1443–1492, 2023, doi: 10.4171/rmi/1354.
J. Dittrich, P. Exner, and P. Šeba, “Dirac operators with a spherically symmetric δ-shell interaction,” J. Math. Phys., vol. 30, no. 12, pp. 2875–2882, 1989, doi: 10.1063/1.528469.
L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, revised ed., ser. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015.
R. J. Hughes, “Relativistic point interactions: approximation by smooth potentials,” Rep. Math. Phys., vol. 39, no. 3, pp. 425–432, 1997, doi: 10.1016/S0034-4877(97)89757-1.
R. J. Hughes, “Finite-rank perturbations of the Dirac operator,” J. Math. Anal. Appl., vol. 238, no. 1, pp. 67–81, 1999, doi: 10.1006/jmaa.1999.6504.
V. Lotoreichik and T. Ourmières-Bonafos, “Spectral asymptotics of the Dirac operator in a thin shell,” 2023, arXiv:2307.09033.
A. Mas and F. Pizzichillo, “The relativistic spherical δ-shell interaction in R3: spectrum and approximation,” J. Math. Phys., vol. 58, no. 8, 2017, Art. ID 082102, doi: 10.1063/1.5000381.
A. Mas and F. Pizzichillo, “Klein’s paradox and the relativistic δ-shell interaction in R3,” Anal. PDE, vol. 11, no. 3, pp. 705–744, 2018, doi: 10.2140/apde.2018.11.705.
M. Reed and B. Simon, Methods of modern mathematical physics. I Functional analysis, 2nd ed. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
P. Šeba, “Klein’s paradox and the relativistic point interaction,” Lett. Math. Phys., vol. 18, no. 1, pp. 77–86, 1989, doi: 10.1007/BF00397060.
B. Thaller, The Dirac equation, ser. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992, doi: 10.1007/978-3-662-02753-0.
J. A. Thorpe, Elementary topics in differential geometry, ser. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1979.
M. Tušek, “Approximation of one-dimensional relativistic point interactions by regular potentials revised,” Lett. Math. Phys., vol. 110, no. 10, pp. 2585–2601, 2020, doi: 10.1007/s11005- 020-01325-6.
- LTC Transmath [BERC.2022-2025]
- BCAM Severo Ochoa research project
Similar Articles
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Stephen McDowall, Optical Tomography for Media with Variable Index of Refraction , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Fernando Cardoso, Claudio Cuevas, Georgi Vodev, Dispersive Estimates for the Schrödinger Equation with Potentials of Critical Regularity , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Helmuth R. Malonek, Dixan Peña, Frank Sommen, Fischer decomposition by inframonogenic functions , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Richard Delanghe, On homogeneous polynomial solutions of generalized Moisil-Théodoresco systems in Euclidean space , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Najoua Gamara, Ali Ben Ahmed, Aribi Amine, A New proof of the CR Pohožaev Identity and related Topics , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- Rémi Léandre, A Girsanov formula associated to a big order pseudo-differential operator , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Nejc Sirovnik, On certain functional equation in semiprime rings and standard operator algebras , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the Laplace transform and the convolution for more functions adjoined , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- George A. Anastassiou, Spline left fractional monotone approximation involving left fractional differential operators , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Zreik.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











