On the approximation of the δ-shell interaction for the 3-D Dirac operator
-
Mahdi Zreik
mahdi.zreik@math.u-bordeaux.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.489Abstract
We consider the three-dimensional Dirac operator coupled with a combination of electrostatic and Lorentz scalar δ-shell interactions. We approximate this operator with general local interactions \(V\). Without any hypotheses of smallness on the potential \(V\), we investigate convergence in the strong resolvent sense to the Dirac Hamiltonian coupled with a δ-shell potential supported on \(S\), a bounded smooth surface. However, the coupling constant depends nonlinearly on the potential \(V\).
Keywords
Mathematics Subject Classification:
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators,” J. Math. Pures Appl. (9), vol. 102, no. 4, pp. 617–639, 2014, doi: 10.1016/j.matpur.2013.12.00.
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators: on the point spectrum and the confinement,” SIAM J. Math. Anal., vol. 47, no. 2, pp. 1044–1069, 2015, doi: 10.1137/14097759X.
N. Arrizabalaga, A. Mas, and L. Vega, “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators,” Comm. Math. Phys., vol. 344, no. 2, pp. 483–505, 2016, doi: 10.1007/s00220-015-2481-y.
J. Behrndt, M. Holzmann, and C. Stelzer, “Approximation of Dirac operators with δ-shell potentials in the norm resolvent sense,” 2023, arXiv:2308.13344.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces,” Math. Nachr., vol. 290, no. 8-9, pp. 1215–1248, 2017, doi: 10.1002/mana.201500498.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions,” Quantum Stud. Math. Found., vol. 6, no. 3, pp. 295–314, 2019, doi: 10.1007/s40509-019-00186-6.
J. Behrndt, M. Holzmann, and M. Tušek, “Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line,” J. Phys. A, vol. 56, no. 4, 2023, Art. ID 045201, doi: 10.1088/1751-8121/acafaf.
B. Cassano, V. Lotoreichik, A. Mas, and M. Tušek, “General δ-shell interactions for the two- dimensional Dirac operator: self-adjointness and approximation,” Rev. Mat. Iberoam., vol. 39, no. 4, pp. 1443–1492, 2023, doi: 10.4171/rmi/1354.
J. Dittrich, P. Exner, and P. Šeba, “Dirac operators with a spherically symmetric δ-shell interaction,” J. Math. Phys., vol. 30, no. 12, pp. 2875–2882, 1989, doi: 10.1063/1.528469.
L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, revised ed., ser. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015.
R. J. Hughes, “Relativistic point interactions: approximation by smooth potentials,” Rep. Math. Phys., vol. 39, no. 3, pp. 425–432, 1997, doi: 10.1016/S0034-4877(97)89757-1.
R. J. Hughes, “Finite-rank perturbations of the Dirac operator,” J. Math. Anal. Appl., vol. 238, no. 1, pp. 67–81, 1999, doi: 10.1006/jmaa.1999.6504.
V. Lotoreichik and T. Ourmières-Bonafos, “Spectral asymptotics of the Dirac operator in a thin shell,” 2023, arXiv:2307.09033.
A. Mas and F. Pizzichillo, “The relativistic spherical δ-shell interaction in R3: spectrum and approximation,” J. Math. Phys., vol. 58, no. 8, 2017, Art. ID 082102, doi: 10.1063/1.5000381.
A. Mas and F. Pizzichillo, “Klein’s paradox and the relativistic δ-shell interaction in R3,” Anal. PDE, vol. 11, no. 3, pp. 705–744, 2018, doi: 10.2140/apde.2018.11.705.
M. Reed and B. Simon, Methods of modern mathematical physics. I Functional analysis, 2nd ed. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
P. Šeba, “Klein’s paradox and the relativistic point interaction,” Lett. Math. Phys., vol. 18, no. 1, pp. 77–86, 1989, doi: 10.1007/BF00397060.
B. Thaller, The Dirac equation, ser. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992, doi: 10.1007/978-3-662-02753-0.
J. A. Thorpe, Elementary topics in differential geometry, ser. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1979.
M. Tušek, “Approximation of one-dimensional relativistic point interactions by regular potentials revised,” Lett. Math. Phys., vol. 110, no. 10, pp. 2585–2601, 2020, doi: 10.1007/s11005- 020-01325-6.
- LTC Transmath [BERC.2022-2025]
- BCAM Severo Ochoa research project
Similar Articles
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Carl Chiarella, Ferenc Szidarovszky, Dynamic Oligopolies and Intertemporal Demand Interaction , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- I. M. Proudnikov, Stochastic model of money flow in economics , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- William Greenberg, Michael Williams, Global Solutions of the Enskog Lattice Equation with Square Well Potential , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- Jean M. Tchuenche, A Uniqueness Theorem in an Age-Physiology Dependent Population Dynamics , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Monique Combescure, Didier Robert, Quadratic Quantum Hamiltonians revisited , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Man Chun Leung, Concentration of solutions of non-linear elliptic equations involving critical Sobolev exponent , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Xue Ping Wang, Semi-classical measures and the Helmholtz Equation , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- A.G. Ramm, One-dimensional inverse scattering and spectral problems , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
<< < 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Zreik.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











