On the approximation of the δ-shell interaction for the 3-D Dirac operator
-
Mahdi Zreik
mahdi.zreik@math.u-bordeaux.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.489Abstract
We consider the three-dimensional Dirac operator coupled with a combination of electrostatic and Lorentz scalar δ-shell interactions. We approximate this operator with general local interactions \(V\). Without any hypotheses of smallness on the potential \(V\), we investigate convergence in the strong resolvent sense to the Dirac Hamiltonian coupled with a δ-shell potential supported on \(S\), a bounded smooth surface. However, the coupling constant depends nonlinearly on the potential \(V\).
Keywords
Mathematics Subject Classification:
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators,” J. Math. Pures Appl. (9), vol. 102, no. 4, pp. 617–639, 2014, doi: 10.1016/j.matpur.2013.12.00.
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators: on the point spectrum and the confinement,” SIAM J. Math. Anal., vol. 47, no. 2, pp. 1044–1069, 2015, doi: 10.1137/14097759X.
N. Arrizabalaga, A. Mas, and L. Vega, “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators,” Comm. Math. Phys., vol. 344, no. 2, pp. 483–505, 2016, doi: 10.1007/s00220-015-2481-y.
J. Behrndt, M. Holzmann, and C. Stelzer, “Approximation of Dirac operators with δ-shell potentials in the norm resolvent sense,” 2023, arXiv:2308.13344.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces,” Math. Nachr., vol. 290, no. 8-9, pp. 1215–1248, 2017, doi: 10.1002/mana.201500498.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions,” Quantum Stud. Math. Found., vol. 6, no. 3, pp. 295–314, 2019, doi: 10.1007/s40509-019-00186-6.
J. Behrndt, M. Holzmann, and M. Tušek, “Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line,” J. Phys. A, vol. 56, no. 4, 2023, Art. ID 045201, doi: 10.1088/1751-8121/acafaf.
B. Cassano, V. Lotoreichik, A. Mas, and M. Tušek, “General δ-shell interactions for the two- dimensional Dirac operator: self-adjointness and approximation,” Rev. Mat. Iberoam., vol. 39, no. 4, pp. 1443–1492, 2023, doi: 10.4171/rmi/1354.
J. Dittrich, P. Exner, and P. Šeba, “Dirac operators with a spherically symmetric δ-shell interaction,” J. Math. Phys., vol. 30, no. 12, pp. 2875–2882, 1989, doi: 10.1063/1.528469.
L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, revised ed., ser. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015.
R. J. Hughes, “Relativistic point interactions: approximation by smooth potentials,” Rep. Math. Phys., vol. 39, no. 3, pp. 425–432, 1997, doi: 10.1016/S0034-4877(97)89757-1.
R. J. Hughes, “Finite-rank perturbations of the Dirac operator,” J. Math. Anal. Appl., vol. 238, no. 1, pp. 67–81, 1999, doi: 10.1006/jmaa.1999.6504.
V. Lotoreichik and T. Ourmières-Bonafos, “Spectral asymptotics of the Dirac operator in a thin shell,” 2023, arXiv:2307.09033.
A. Mas and F. Pizzichillo, “The relativistic spherical δ-shell interaction in R3: spectrum and approximation,” J. Math. Phys., vol. 58, no. 8, 2017, Art. ID 082102, doi: 10.1063/1.5000381.
A. Mas and F. Pizzichillo, “Klein’s paradox and the relativistic δ-shell interaction in R3,” Anal. PDE, vol. 11, no. 3, pp. 705–744, 2018, doi: 10.2140/apde.2018.11.705.
M. Reed and B. Simon, Methods of modern mathematical physics. I Functional analysis, 2nd ed. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
P. Šeba, “Klein’s paradox and the relativistic point interaction,” Lett. Math. Phys., vol. 18, no. 1, pp. 77–86, 1989, doi: 10.1007/BF00397060.
B. Thaller, The Dirac equation, ser. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992, doi: 10.1007/978-3-662-02753-0.
J. A. Thorpe, Elementary topics in differential geometry, ser. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1979.
M. Tušek, “Approximation of one-dimensional relativistic point interactions by regular potentials revised,” Lett. Math. Phys., vol. 110, no. 10, pp. 2585–2601, 2020, doi: 10.1007/s11005- 020-01325-6.
- LTC Transmath [BERC.2022-2025]
- BCAM Severo Ochoa research project
Similar Articles
- Philip J. Maher, Mohammad Sal Moslehian, More on approximate operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Mouez Dimassi, Maher Zerzeri, Spectral shift function for slowly varying perturbation of periodic Schrödinger operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Elke Wolf, Integral composition operators between weighted Bergman spaces and weighted Bloch type spaces , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- W. Tutschke, Interactions between partial differential equations and generalized analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Rabha W. Ibrahim, Existence of deviating fractional differential equation , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Violeta Petkova, Spectral results for operators commuting with translations on Banach spaces of sequences on Zᴷ and Z⺠, CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- M. Angélica Astaburuaga, Víctor H. Cortés, Claudio Fernández, Rafael Del Río, Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares , CUBO, A Mathematical Journal: In Press
- Alexander G. Ramm, A characterization of Unbounded Fredholm Operators , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- S.S. Dragomir, Refinements of the generalized trapezoid inequality in terms of the cumulative variation and applications , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Nicolas Lerner, The Wick calculus of pseudo-differential operators and some of its applications , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Zreik.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











