On the approximation of the δ-shell interaction for the 3-D Dirac operator
-
Mahdi Zreik
mahdi.zreik@math.u-bordeaux.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.489Abstract
We consider the three-dimensional Dirac operator coupled with a combination of electrostatic and Lorentz scalar δ-shell interactions. We approximate this operator with general local interactions \(V\). Without any hypotheses of smallness on the potential \(V\), we investigate convergence in the strong resolvent sense to the Dirac Hamiltonian coupled with a δ-shell potential supported on \(S\), a bounded smooth surface. However, the coupling constant depends nonlinearly on the potential \(V\).
Keywords
Mathematics Subject Classification:
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators,” J. Math. Pures Appl. (9), vol. 102, no. 4, pp. 617–639, 2014, doi: 10.1016/j.matpur.2013.12.00.
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators: on the point spectrum and the confinement,” SIAM J. Math. Anal., vol. 47, no. 2, pp. 1044–1069, 2015, doi: 10.1137/14097759X.
N. Arrizabalaga, A. Mas, and L. Vega, “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators,” Comm. Math. Phys., vol. 344, no. 2, pp. 483–505, 2016, doi: 10.1007/s00220-015-2481-y.
J. Behrndt, M. Holzmann, and C. Stelzer, “Approximation of Dirac operators with δ-shell potentials in the norm resolvent sense,” 2023, arXiv:2308.13344.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces,” Math. Nachr., vol. 290, no. 8-9, pp. 1215–1248, 2017, doi: 10.1002/mana.201500498.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions,” Quantum Stud. Math. Found., vol. 6, no. 3, pp. 295–314, 2019, doi: 10.1007/s40509-019-00186-6.
J. Behrndt, M. Holzmann, and M. Tušek, “Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line,” J. Phys. A, vol. 56, no. 4, 2023, Art. ID 045201, doi: 10.1088/1751-8121/acafaf.
B. Cassano, V. Lotoreichik, A. Mas, and M. Tušek, “General δ-shell interactions for the two- dimensional Dirac operator: self-adjointness and approximation,” Rev. Mat. Iberoam., vol. 39, no. 4, pp. 1443–1492, 2023, doi: 10.4171/rmi/1354.
J. Dittrich, P. Exner, and P. Šeba, “Dirac operators with a spherically symmetric δ-shell interaction,” J. Math. Phys., vol. 30, no. 12, pp. 2875–2882, 1989, doi: 10.1063/1.528469.
L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, revised ed., ser. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015.
R. J. Hughes, “Relativistic point interactions: approximation by smooth potentials,” Rep. Math. Phys., vol. 39, no. 3, pp. 425–432, 1997, doi: 10.1016/S0034-4877(97)89757-1.
R. J. Hughes, “Finite-rank perturbations of the Dirac operator,” J. Math. Anal. Appl., vol. 238, no. 1, pp. 67–81, 1999, doi: 10.1006/jmaa.1999.6504.
V. Lotoreichik and T. Ourmières-Bonafos, “Spectral asymptotics of the Dirac operator in a thin shell,” 2023, arXiv:2307.09033.
A. Mas and F. Pizzichillo, “The relativistic spherical δ-shell interaction in R3: spectrum and approximation,” J. Math. Phys., vol. 58, no. 8, 2017, Art. ID 082102, doi: 10.1063/1.5000381.
A. Mas and F. Pizzichillo, “Klein’s paradox and the relativistic δ-shell interaction in R3,” Anal. PDE, vol. 11, no. 3, pp. 705–744, 2018, doi: 10.2140/apde.2018.11.705.
M. Reed and B. Simon, Methods of modern mathematical physics. I Functional analysis, 2nd ed. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
P. Šeba, “Klein’s paradox and the relativistic point interaction,” Lett. Math. Phys., vol. 18, no. 1, pp. 77–86, 1989, doi: 10.1007/BF00397060.
B. Thaller, The Dirac equation, ser. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992, doi: 10.1007/978-3-662-02753-0.
J. A. Thorpe, Elementary topics in differential geometry, ser. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1979.
M. Tušek, “Approximation of one-dimensional relativistic point interactions by regular potentials revised,” Lett. Math. Phys., vol. 110, no. 10, pp. 2585–2601, 2020, doi: 10.1007/s11005- 020-01325-6.
- LTC Transmath [BERC.2022-2025]
- BCAM Severo Ochoa research project
Similar Articles
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Abdellatif Moudafi, Computing the resolvent of composite operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Bernard Helffer, Xing-Bin Pan, On Some Spectral Problems and Asymptotic Limits Occuring in the Analysis of Liquid Crystals , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Baharak Moosavi, Mohsen Shah Hosseini, Some norm inequalities for accretive Hilbert space operators , CUBO, A Mathematical Journal: Vol. 26 No. 2 (2024)
- Laurent Amour, Benoit Grébert, Jean-Claude Guillot, A mathematical model for the Fermi weak interactions , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Arianna Dal Forno, Ugo Merlone, Optimal Effort in Heterogeneous Agents Population with Global and Local Interactions , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Frederico Furtado, Felipe Pereira, On the Scale Up Problem for Two-Phase Flow in Petroleum Reservoirs , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Zreik.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











