On the approximation of the δ-shell interaction for the 3-D Dirac operator
-
Mahdi Zreik
mahdi.zreik@math.u-bordeaux.fr
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2603.489Abstract
We consider the three-dimensional Dirac operator coupled with a combination of electrostatic and Lorentz scalar δ-shell interactions. We approximate this operator with general local interactions \(V\). Without any hypotheses of smallness on the potential \(V\), we investigate convergence in the strong resolvent sense to the Dirac Hamiltonian coupled with a δ-shell potential supported on \(S\), a bounded smooth surface. However, the coupling constant depends nonlinearly on the potential \(V\).
Keywords
Mathematics Subject Classification:
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators,” J. Math. Pures Appl. (9), vol. 102, no. 4, pp. 617–639, 2014, doi: 10.1016/j.matpur.2013.12.00.
N. Arrizabalaga, A. Mas, and L. Vega, “Shell interactions for Dirac operators: on the point spectrum and the confinement,” SIAM J. Math. Anal., vol. 47, no. 2, pp. 1044–1069, 2015, doi: 10.1137/14097759X.
N. Arrizabalaga, A. Mas, and L. Vega, “An isoperimetric-type inequality for electrostatic shell interactions for Dirac operators,” Comm. Math. Phys., vol. 344, no. 2, pp. 483–505, 2016, doi: 10.1007/s00220-015-2481-y.
J. Behrndt, M. Holzmann, and C. Stelzer, “Approximation of Dirac operators with δ-shell potentials in the norm resolvent sense,” 2023, arXiv:2308.13344.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “Approximation of Schrödinger operators with δ-interactions supported on hypersurfaces,” Math. Nachr., vol. 290, no. 8-9, pp. 1215–1248, 2017, doi: 10.1002/mana.201500498.
J. Behrndt, P. Exner, M. Holzmann, and V. Lotoreichik, “On Dirac operators in R3 with electrostatic and Lorentz scalar δ-shell interactions,” Quantum Stud. Math. Found., vol. 6, no. 3, pp. 295–314, 2019, doi: 10.1007/s40509-019-00186-6.
J. Behrndt, M. Holzmann, and M. Tušek, “Two-dimensional Dirac operators with general δ-shell interactions supported on a straight line,” J. Phys. A, vol. 56, no. 4, 2023, Art. ID 045201, doi: 10.1088/1751-8121/acafaf.
B. Cassano, V. Lotoreichik, A. Mas, and M. Tušek, “General δ-shell interactions for the two- dimensional Dirac operator: self-adjointness and approximation,” Rev. Mat. Iberoam., vol. 39, no. 4, pp. 1443–1492, 2023, doi: 10.4171/rmi/1354.
J. Dittrich, P. Exner, and P. Šeba, “Dirac operators with a spherically symmetric δ-shell interaction,” J. Math. Phys., vol. 30, no. 12, pp. 2875–2882, 1989, doi: 10.1063/1.528469.
L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, revised ed., ser. Textbooks in Mathematics. CRC Press, Boca Raton, FL, 2015.
R. J. Hughes, “Relativistic point interactions: approximation by smooth potentials,” Rep. Math. Phys., vol. 39, no. 3, pp. 425–432, 1997, doi: 10.1016/S0034-4877(97)89757-1.
R. J. Hughes, “Finite-rank perturbations of the Dirac operator,” J. Math. Anal. Appl., vol. 238, no. 1, pp. 67–81, 1999, doi: 10.1006/jmaa.1999.6504.
V. Lotoreichik and T. Ourmières-Bonafos, “Spectral asymptotics of the Dirac operator in a thin shell,” 2023, arXiv:2307.09033.
A. Mas and F. Pizzichillo, “The relativistic spherical δ-shell interaction in R3: spectrum and approximation,” J. Math. Phys., vol. 58, no. 8, 2017, Art. ID 082102, doi: 10.1063/1.5000381.
A. Mas and F. Pizzichillo, “Klein’s paradox and the relativistic δ-shell interaction in R3,” Anal. PDE, vol. 11, no. 3, pp. 705–744, 2018, doi: 10.2140/apde.2018.11.705.
M. Reed and B. Simon, Methods of modern mathematical physics. I Functional analysis, 2nd ed. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980.
P. Šeba, “Klein’s paradox and the relativistic point interaction,” Lett. Math. Phys., vol. 18, no. 1, pp. 77–86, 1989, doi: 10.1007/BF00397060.
B. Thaller, The Dirac equation, ser. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992, doi: 10.1007/978-3-662-02753-0.
J. A. Thorpe, Elementary topics in differential geometry, ser. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1979.
M. Tušek, “Approximation of one-dimensional relativistic point interactions by regular potentials revised,” Lett. Math. Phys., vol. 110, no. 10, pp. 2585–2601, 2020, doi: 10.1007/s11005- 020-01325-6.
- LTC Transmath [BERC.2022-2025]
- BCAM Severo Ochoa research project
Similar Articles
- Aparajita Dasgupta, M.W. Wong, The semigroup and the inverse of the Laplacian on the Heisenberg group , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Bruno De Malafosse, Vladimir RakoÄević, Calculations in new sequence spaces and application to statistical convergence , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Meriem Djibaoui, Toufik Moussaoui, Variational methods to second-order Dirichlet boundary value problems with impulses on the half-line , CUBO, A Mathematical Journal: Vol. 24 No. 2 (2022)
- Essozimna Kpizim, Bertin Dehigbe, Ramkumar Kasinathan, Ravikumar Kasinathan, Mamadou Abdoul Diop, Approximate controllability of non-instantaneous impulsive stochastic integrodifferential equations driven by Rosenblatt process via resolvent operators , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Rémi Léandre, A Girsanov formula associated to a big order pseudo-differential operator , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Grigori Rozenblum, Nikolay Shirokov, Entire Functions in Weighted ð˜“â‚‚ and Zero Modes of the Pauli Operator with Non-Signdefinite Magnetic Field , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Fernando Cardoso, Claudio Cuevas, Georgi Vodev, Dispersive Estimates for the Schrödinger Equation with Potentials of Critical Regularity , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the Laplace transform and the convolution for more functions adjoined , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
<< < 2 3 4 5 6 7 8 9 10 11 12 13 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 M. Zreik.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











