A note on Buell’s Theorem on length four Büchi sequences
-
Fabrice Jaillet
fabrice.jaillet@liris.cnrs.fr
-
Xavier Vidaux
xvidaux@udec.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.001Abstract
Büchi sequences are sequences whose second difference of squares is the sequence (2,..., 2), like for instance (6, 23, 32, 39) – so they can be seen as a generalization of arithmetic progressions. No (non-trivial) length 5 Büchi sequence is known to exist. Length four Büchi sequences were parameterized by D. A. Buell in 1987. We revisit his theorem, fixing the statement (about 26% of the Büchi sequences from R. G. E. Pinch's 1993 table were missed), and giving a much simpler proof.
Keywords
Mathematics Subject Classification:
D. A. Buell, “Integer squares with constant second difference”, Math. Comp., vol. 49, no. 180, pp. 635–644, 1987, doi: 10.2307/2008336.
D. Hensley, “Sequences of squares with second difference of two and a conjecture of Büchi”, 1980/1983, unpublished.
D. Hensley, “Sequences of squares with second difference of two and a problem of logic”, 1980/1983, unpublished.
J. Lipman, “Büchi’s problem about squares”, 2006, rev. 2021, https://www.math.purdue.edu/∼jlipman/Buchitalk-Huge.pdf.
H. Pasten, T. Pheidas, and X. Vidaux, “A survey on Büchi’s problem: new presentations and open problems”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 377, pp. 111–140, 243, 2010, doi: 10.1007/s10958-010-0181-x.
H. Pasten, “Powerful values of polynomials and a conjecture of Vojta”, J. Number Theory, vol. 133, no. 9, pp. 2964–2998, 2013, doi: 10.1016/j.jnt.2013.03.001.
R. G. E. Pinch, “Squares in quadratic progression”, Math. Comp., vol.60, no.202, pp.841–845, 1993, doi: 10.2307/2153124.
P. Sáez and X. Vidaux, “A characterization of Büchi’s integer sequences of length 3”, Acta Arith., vol. 149, no. 1, pp. 37–56, 2011, doi: 10.4064/aa149-1-3.
P. Sáez, X. Vidaux, and M. Vsemirnov, “Endomorphisms and dynamic on the affine Büchi’s quadratic 4 surface”, Mosc. Math. J., vol. 24, no. 3, pp. 441–459, 2024, doi: 10.17323/1609-4514-2024-24-3-441-459.
X. Vidaux, “Polynomial parametrizations of length 4 Büchi sequences”, Acta Arith., vol. 150, no. 3, pp. 209–226, 2011, doi: 10.4064/aa150-3-1.
P. Vojta, “Diagonal quadratic forms and Hilbert’s tenth problem”, in Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2000, vol. 270, pp. 261–274, doi: 10.1090/conm/270/04378.
- ANID Fondecyt research project 1210329
Similar Articles
- F. Brackx, R. Delanghe, F. Sommen, Differential Forms and/or Multi-vector Functions , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Silvestru Sever Dragomir, Bounds for the generalized \( (\Phi;f) \)-mean difference , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Goutam Haldar, Uniqueness of entire functions whose difference polynomials share a polynomial with finite weight , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
- M.I. Belishev, Dynamical Inverse Problem for the Equation ð’°áµ¼áµ¼ − Δ𒰠− ∇ln𜌠· ∇𒰠= 0 (the BC Method) , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Masaru Ikehata, Inverse Crack Problem and Probe Method , CUBO, A Mathematical Journal: Vol. 8 No. 1 (2006): CUBO, A Mathematical Journal
- Bourama Toni, Planar Pseudo-almost Limit Cycles and Applications to solitary Waves , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- S. Tchuiaga, M. Koivogui, F. Balibuno, V. Mbazumutima, On topological symplectic dynamical systems , CUBO, A Mathematical Journal: Vol. 19 No. 2 (2017): CUBO, A Mathematical Journal
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- Binayak Choudhury, Subhajit Kundu, Approximating a solution of an equilibrium problem by Viscosity iteration involving a nonexpansive semigroup , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. Jaillet et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.