A note on Buell’s Theorem on length four Büchi sequences
-
Fabrice Jaillet
fabrice.jaillet@liris.cnrs.fr
-
Xavier Vidaux
xvidaux@udec.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.001Abstract
Büchi sequences are sequences whose second difference of squares is the sequence (2,..., 2), like for instance (6, 23, 32, 39) – so they can be seen as a generalization of arithmetic progressions. No (non-trivial) length 5 Büchi sequence is known to exist. Length four Büchi sequences were parameterized by D. A. Buell in 1987. We revisit his theorem, fixing the statement (about 26% of the Büchi sequences from R. G. E. Pinch's 1993 table were missed), and giving a much simpler proof.
Keywords
Mathematics Subject Classification:
D. A. Buell, “Integer squares with constant second difference”, Math. Comp., vol. 49, no. 180, pp. 635–644, 1987, doi: 10.2307/2008336.
D. Hensley, “Sequences of squares with second difference of two and a conjecture of Büchi”, 1980/1983, unpublished.
D. Hensley, “Sequences of squares with second difference of two and a problem of logic”, 1980/1983, unpublished.
J. Lipman, “Büchi’s problem about squares”, 2006, rev. 2021, https://www.math.purdue.edu/∼jlipman/Buchitalk-Huge.pdf.
H. Pasten, T. Pheidas, and X. Vidaux, “A survey on Büchi’s problem: new presentations and open problems”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 377, pp. 111–140, 243, 2010, doi: 10.1007/s10958-010-0181-x.
H. Pasten, “Powerful values of polynomials and a conjecture of Vojta”, J. Number Theory, vol. 133, no. 9, pp. 2964–2998, 2013, doi: 10.1016/j.jnt.2013.03.001.
R. G. E. Pinch, “Squares in quadratic progression”, Math. Comp., vol.60, no.202, pp.841–845, 1993, doi: 10.2307/2153124.
P. Sáez and X. Vidaux, “A characterization of Büchi’s integer sequences of length 3”, Acta Arith., vol. 149, no. 1, pp. 37–56, 2011, doi: 10.4064/aa149-1-3.
P. Sáez, X. Vidaux, and M. Vsemirnov, “Endomorphisms and dynamic on the affine Büchi’s quadratic 4 surface”, Mosc. Math. J., vol. 24, no. 3, pp. 441–459, 2024, doi: 10.17323/1609-4514-2024-24-3-441-459.
X. Vidaux, “Polynomial parametrizations of length 4 Büchi sequences”, Acta Arith., vol. 150, no. 3, pp. 209–226, 2011, doi: 10.4064/aa150-3-1.
P. Vojta, “Diagonal quadratic forms and Hilbert’s tenth problem”, in Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999), ser. Contemp. Math. Amer. Math. Soc., Providence, RI, 2000, vol. 270, pp. 261–274, doi: 10.1090/conm/270/04378.
- ANID Fondecyt research project 1210329
Similar Articles
- Carl Chiarella, Ferenc Szidarovszky, Dynamic Oligopolies and Intertemporal Demand Interaction , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Ferenc Szidarovszky, Vernon L. Smith, Steven Rassenti, Cournot Models: Dynamics, Uncertainty and Learning , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Monique Combescure, Circulant Matrices, Gauss Sums and Mutually Unbiased Bases, I. The Prime Number Case , CUBO, A Mathematical Journal: Vol. 11 No. 4 (2009): CUBO, A Mathematical Journal
- Manuel Pinto, Nonlinear Impulsive Differential Systems , CUBO, A Mathematical Journal: Vol. 2 No. 1 (2000): CUBO, Matemática Educacional
- Chao-Ping Chen, Ai-Qi Liu, Feng Qi, Proofs for the Limit of Ratios of Consecutive Terms in Fibonacci Sequence , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Ioannis K. Argyros, Saïd Hilout, Convergence conditions for the secant method , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Stanislas Ouaro, Well-Posedness results for anisotropic nonlinear elliptic equations with variable exponent and 𘓹 -data , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Augusto Visintin, About Models of Ferromagnetic Hysteresis , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- H. Peter Gumm, State based systems are coalgebras , CUBO, A Mathematical Journal: Vol. 5 No. 2 (2003): CUBO, Matemática Educacional
- Elena I. Kaikina, Leonardo Guardado-Zavala, Hector F. Ruiz-Paredes, S. Juarez Zirate, Korteweg-de Vries-Burgers equation on a segment , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
<< < 3 4 5 6 7 8 9 10 11 12 13 14 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 F. Jaillet et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.