Almost automorphic solutions for some nonautonomous evolution equations under the light of integrable dichotomy

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2701.029

Abstract

In this work, we prove the existence and uniqueness of \(\mu\)-pseudo almost automorphic solutions for a class of semilinear nonautonomous evolution equations of the form: \(u'(t)=A(t)u(t)+f(t,u(t)),\; t\in\mathbb{R}\) where \((A(t))_{t\in \mathbb{R}}\) is a family of closed linear operators acting in a Banach space \( X \) that generates an evolution family having an integrable dichotomy on \( \mathbb{R} \) and \( f : \mathbb{R} \times X \to X \) is \( \mu \)-pseudo almost automorphic with respect to \(t\) and Lipshitzian in the second variable. Moreover we provide an application illustrating our results.

 

 

Keywords

Evolution family , delay evolution equations , exponential dichotomy , integrable dichotomy , µ-pseudo almost automorphic functions

Mathematics Subject Classification:

46T20 , 47J35 , 34C27 , 35K58
  • Pages: 29–54
  • Date Published: 2025-04-27
  • Vol. 27 No. 1 (2025)

L. Abadias, E. Alvarez, and R. Grau, “(ω,c)-periodic mild solutions to non-autonomous abstract differential equations,” Mathematics, vol. 9, no. 5, 2021, Art. ID 474, doi: 10.3390/math9050474.

A.-N. Akdad, B. Essebbar, and K. Ezzinbi, “Composition theorems of Stepanov µ-pseudo almost automorphic functions and applications to nonautonomous neutral evolution equations,” Differ. Equ. Dyn. Syst., vol. 25, no. 3, pp. 397–416, 2017, doi: 10.1007/s12591-015-0246-x.

M. Baroun, K. Ezzinbi, K. Khalil, and L. Maniar, “Almost automorphic solutions for nonautonomous parabolic evolution equations,” Semigroup Forum, vol. 99, no. 3, pp. 525–567, 2019, doi: 10.1007/s00233-019-10045-w.

J. Blot, G. M. Mophou, G. M. N’Guérékata, and D. Pennequin, “Weighted pseudo almost automorphic functions and applications to abstract differential equations,” Nonlinear Anal., vol. 71, no. 3-4, pp. 903–909, 2009.

J. Blot, P. Cieutat, and K. Ezzinbi “Measure theory and pseudo almost automorphic functions: new developments and applications,” Nonlinear Anal., vol. 75, no. 4, pp. 2426–2447, 2012, doi: 10.1016/j.na.2011.10.041.

J. Blot, P. Cieutat, and K. Ezzinbi, “New approach for weighted pseudo-almost periodic functions under the light of measure theory, basic results and applications,” Appl. Anal., vol. 92, no. 3, pp. 493–526, 2013, doi: 10.1080/00036811.2011.628941.

J. Blot, P. Cieutat, G. M. N’Guérékata, and D. Pennequin, “Superposition operators between various almost periodic function spaces and applications,” Commun. Math. Anal., vol. 6, no. 1, pp. 42–70, 2009.

S. Bochner, “Uniform convergence of monotone sequences of functions,” Proc. Nat. Acad. Sci. U.S.A., vol. 47, pp. 582–585, 1961, doi: 10.1073/pnas.47.4.582.

S. Bochner, “A new approach to almost periodicity,” Proc. Nat. Acad. Sci. U.S.A., vol. 48, pp. 2039–2043, 1962, doi: 10.1073/pnas.48.12.2039.

S. Bochner, “Continuous mappings of almost automorphic and almost periodic functions,” Proc. Nat. Acad. Sci. U.S.A., vol. 52, pp. 907–910, 1964, doi: 10.1073/pnas.52.4.907.

S. Bochner and J. Von Neumann, “On compact solutions of operational-differential equations. I,” Ann. of Math. (2), vol. 36, no. 1, pp. 255–291, 1935.

H. Bohr, “Zur Theorie der fastperiodischen Funktionen. I. Eine Verallgemeinerung der Theorie der Fourierreihen.” Acta Math., vol. 45, pp. 29–127, 1924, doi: 10.1007/BF02395468.

W. Coppel, Stability and Asymptotic Behaviour of Differential Equations, ser. Heath and mathematical monographs. Heath, 1965.

T. Diagana, “Existence of p-almost automorphic mild solution to some abstract differential equations,” Int. J. Evol. Equ., vol. 1, no. 1, pp. 57–67, 2005.

K.-J. Engel and R. Nagel, One-parameter semigroups for linear evolution equations, ser. Graduate Texts in Mathematics. Springer-Verlag, New York, 2000, vol. 194.

B. Es-sebbar and K. Ezzinbi, “Stepanov ergodic perturbations for some neutral partial functional differential equations,” Math. Methods Appl. Sci., vol. 39, no. 8, pp. 1945–1963, 2016, doi: 10.1002/mma.3611.

K. Ezzinbi, S. Fatajou, and G. M. N’guérékata, “Pseudo-almost-automorphic solutions to some neutral partial functional differential equations in Banach spaces,” Nonlinear Anal., vol. 70, no. 4, pp. 1641–1647, 2009, doi: 10.1016/j.na.2008.02.039.

J. Hong, R. Obaya, and A. Sanz, “Almost periodic type solutions of some differential equations with piecewise constant argument,” Nonlinear Anal., vol. 45, no. 6, pp. 661–688, 2001, doi: 10.1016/S0362-546X(98)00296-X.

J.-h. Liu and X.-q. Song, “Almost automorphic and weighted pseudo almost automorphic solutions of semilinear evolution equations,” J. Funct. Anal., vol. 258, no. 1, pp. 196–207, 2010, doi: 10.1016/j.jfa.2009.06.007.

A. Pazy, Semigroups of linear operators and applications to partial differential equations, ser. Applied Mathematical Sciences. Springer-Verlag, New York, 1983, vol. 44, doi: 10.1007/978-1-4612-5561-1.

M. Pinto, “Bounded and periodic solutions of nonlinear integro-differential equations with infinite delay,” Electron. J. Qual. Theory Differ. Equ., pp. No. 46, 20, 2009, doi: 10.14232/ejqtde.2009.1.46.

M. Pinto and C. Vidal, “Pseudo-almost-periodic solutions for delayed differential equations with integral dichotomies and bi-almost-periodic Green functions,” Math. Methods Appl. Sci., vol. 40, no. 18, pp. 6998–7012, 2017, doi: 10.1002/mma.4507.

Z. Xia, “Pseudo asymptotic behavior of mild solution for nonautonomous integrodifferential equations with nondense domain,” J. Appl. Math., 2014, Art. ID 419103, doi: 10.1155/2014/419103.

T.-J. Xiao, J. Liang, and J. Zhang, “Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces,” Semigroup Forum, vol. 76, no. 3, pp. 518–524, 2008, doi: 10.1007/s00233-007-9011-y.

C. Y. Zhang, “Pseudo-almost-periodic solutions of some differential equations,” J. Math. Anal. Appl., vol. 181, no. 1, pp. 62–76, 1994, doi: 10.1006/jmaa.1994.1005.

R. Zhang, Y.-K. Chang, and G. M. N’Guérékata, “New composition theorems of Stepanov-like weighted pseudo almost automorphic functions and applications to nonautonomous evolution equations,” Nonlinear Anal. Real World Appl., vol. 13, no. 6, pp. 2866–2879, 2012, doi: 10.1016/j.nonrwa.2012.04.016.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2025-04-27

How to Cite

[1]
A. A. K. Dianda and K. Ezzinbi, “Almost automorphic solutions for some nonautonomous evolution equations under the light of integrable dichotomy”, CUBO, vol. 27, no. 1, pp. 29–54, Apr. 2025.

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.