Estimating the remainder of an alternating \(p\)-series revisited
-
Vito Lampret
vito.lampret@guest.arnes.si
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2701.075Abstract
For the \( n \)th remainder \( R_n(p):=
\sum_{k=n+1}^{\infty}(-1)^{k+1}k^{-p} \) of an alternating
\( p \)-series, several asymptotic estimates are presented. For
example, for any integer \( n \ge 3 \), and \( p \in \mathbb{R}^+ \), we have
\[
R_n(p) = \frac{(-1)^n}{2\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^p} -
\frac{p}{4\left(2\left\lfloor \frac{n+1}{2} \right\rfloor\right)^{p+1}}
+ \varepsilon_n^*(p)
\]
and
\[
\left| \varepsilon_n^*(p) \right| < \frac{p(p+1)}{5\,(n-2)^{p+2}},
\]
where \( \lfloor x \rfloor \) denotes the integer part (the floor) of \( x \).
Keywords
Mathematics Subject Classification:
O. Echi, A. Khalfallah, and D. Kroumi, “Estimating the remainder of an alternating series using hypergeometric functions,” J. Math. Inequal., vol. 17, no. 2, pp. 569–580, 2023, doi: https://doi.org/10.7153/jmi-2023-17-36">10.7153/jmi-2023-17-36
V. Lampret, “Efficient estimate of the remainder for the Dirichlet function ( eta(p) ) for ( p in mathbb{R}^+ ),” Miskolc Math. Notes, vol. 21, no. 1, pp. 241–247, 2020, doi: https://doi.org/10.18514/mmn.2020.2877">10.18514/mmn.2020.2877
A. Sîntămărian, “A new proof for estimating the remainder of the alternating harmonic series,” Creat. Math. Inform, vol. 21, no. 2, pp. 221–225, 2012.
A. Sîntămărian, “Sharp estimates regarding the remainder of the alternating harmonic series,” Math. Inequal. Appl., vol. 18, no. 1, pp. 347–352, 2015, doi: https://doi.org/10.7153/mia-18-24">10.7153/mia-18-24
L. Tóth and J. Bukor, “On the alternating series ( 1 - frac{1}{2} + frac{1}{3} - frac{1}{4} + cdots ),” J. Math. Anal. Appl., vol. 282, no. 1, pp. 21–25, 2003, doi: https://doi.org/10.1016/S0022-247X(02)00344-X
S. Wolfram, “Mathematica 7.0,” (2008). Wolfram Research, Inc.
Most read articles by the same author(s)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, The perimeter of a flattened ellipse can be estimated accurately even from Maclaurin‘s series , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Vito Lampret, Basic asymptotic estimates for powers of Wallis‘ ratios , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Vito Lampret, An asymptotic estimate of Aoki’s function , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
Similar Articles
- U. Guerrero-Valadez, H. Torres-López, A. G. Zamora, Deformaciones de variedades abelianas con un grupo de automorfismos , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Aníbal Coronel, Fernando Huancas, Esperanza Lozada, Jorge Torres, Análisis matemático de un problema inverso para un sistema de reacción-difusión originado en epidemiología , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Sergio Amat, Sonia Busquier, David Levin, Juan C. Trillo, Esquemas de subdivisión no lineales: 25 años de historia a través de 75 contribuciones , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- M. Angélica Astaburuaga, Víctor H. Cortés, Claudio Fernández, Rafael Del Río, Estabilidad espectral y resonancias para perturbaciones de rango finito y singulares , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- Terje Hill, David A. Robbins, Vector-valued algebras and variants of amenability , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Mohammad Farhan, Edy Tri Baskoro, Further results on the metric dimension and spectrum of graphs , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
- Zahoor Ahmad Rather, Rais Ahmad, Inertial viscosity Mann-type subgradient extragradient algorithms for solving variational inequality and fixed point problems in real Hilbert spaces , CUBO, A Mathematical Journal: Vol. 28 No. 1 (2026)
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Vito Lampret

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










