Pseudoinversos de morfismos entre variedades abelianas
Pseudoinverses of morphisms between Abelian varieties
-
Robert Auffarth
rfauffar@uchile.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.179Abstract
We show that to each homomorphism between polarized abelian varieties, we can associate its so-called pseudoinverse homomorphism, which can be seen as analogous to the Moore-Penrose matrix of a given complex matrix. We study some properties of this homomorphism.
Resumen:Mostramos que a cada homomorfismo entre variedades abelianas polarizadas le podemos asociar lo que llamamos su homomorfismo pseudoinverso, el cual es la noción homóloga de la matriz de Moore-Penrose de una matriz compleja dada. Estudiamos algunas propiedades de este homomorfismo.
Keywords
Mathematics Subject Classification:
C. Birkenhake and H. Lange, Complex tori, ser. Prog. Math. Boston: Birkhäuser, 1999, vol. 177.
C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed., ser. Grundlehren Math. Wiss. Berlin: Springer, 2004, vol. 302.
R. Cockett and J.-S. Pacaud Lemay, “Moore-Penrose dagger categories,” in Proceedings of the 20th international conference on quantum physics and logic, QPL, Paris, France, July 17–21, 2023. Waterloo: Open Publishing Association (OPA), 2023, pp. 171–186.
R. Piziak, P. L. Odell, and R. Hahn, “Constructing projections on sums and intersections,” Comput. Math. Appl., vol. 37, no. 1, pp. 67–74, 1999.
- Fondecyt 1220997 (ANID)
- Math-AmSud GV-BCEF 220010
Most read articles by the same author(s)
- Robert Auffarth, Giancarlo Lucchini Arteche, Pablo Quezada, Smooth quotients of abelian surfaces by finite groups that fix the origin , CUBO, A Mathematical Journal: Vol. 24 No. 1 (2022)
Similar Articles
- Elhoussain Arhrrabi, Hamza El-Houari, Fractional Sobolev space: Study of Kirchhoff-Schrödinger systems with singular nonlinearity , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Edoardo Ballico, Osculating varieties and their joins: \(\mathbb{P}^1\times \mathbb{P}^1\) , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Wilfrid Hodges, Saharon Shelah, Naturality and definability II , CUBO, A Mathematical Journal: Vol. 21 No. 3 (2019)
- P. Jeyanthi, K. Jeya Daisy, Andrea SemaniÄová-feňovÄíková, \(Z_k\)-magic labeling of path union of graphs , CUBO, A Mathematical Journal: Vol. 21 No. 2 (2019)
- Jiri Rosický, Injectivity and accessible categories , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Timothy Porter, Abstract Homotopy Theory: The Interaction of Category Theory and Homotopy Theory , CUBO, A Mathematical Journal: Vol. 5 No. 1 (2003): CUBO, Matemática Educacional
- Kazuo Nishimura, John Stachurski, Discrete Time Models in Economic Theory , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Augustin Banyaga, Symplectic geometry and related structures , CUBO, A Mathematical Journal: Vol. 6 No. 1 (2004): CUBO, A Mathematical Journal
- Peter Danchev, Notes on the Isomorphism and Splitting Problems for Commutative Modular Group Algebras , CUBO, A Mathematical Journal: Vol. 9 No. 1 (2007): CUBO, A Mathematical Journal
- George A. Anastassiou, Converse Fractional Opial Inequalities for Several Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. Auffarth

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.