Algunas extensiones infinitas de \(\mathbb{Q}\) con la propiedad de Bogomolov

Some infinite extensions of \(\mathbb{Q}\) satisfying Bogomolov’s property

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2702.191

Abstract

Let \( \ell \) be a prime number and \( K_{\ell} = \mathbb{Q}(\zeta_{\ell}) \) the cyclotomic field, where \( \zeta_{\ell} \) is a primitive \( \ell \)-root of unity. Choosing a prime ideal \( \mathfrak{p} \subseteq \mathcal{O}_{K_{\ell}} \) in the ring of algebraic integers of \( K_{\ell} \), we denote by \( S_{\mathfrak{p},\ell} \) all the Galois extensions of \( K_{\ell} \) of degree \( \ell \) where \( \mathfrak{p} \) does not split. Let \( L_{\mathfrak{p},\ell} \) be the compositum of Hilbert class fields of the fields of \( S_{\mathfrak{p},\ell} \). In this work, we show that \( L_{\mathfrak{p},\ell} \) satisfies Bogomolov's property by analyzing certain local degrees over \( K_{\ell} \). We also study the relation between \( L_{\mathfrak{p},\ell} \) and other families present in the literature satisfying Bogomolov's property in the case \( \ell = 2 \).

Resumen:

Sea \( \ell \) un número primo y \( K_{\ell} = \mathbb{Q}(\zeta_{\ell}) \) el cuerpo ciclotómico donde \( \zeta_{\ell} \) es una raíz primitiva \( \ell \)-ésima de la unidad. Eligiendo un ideal primo \( \mathfrak{p} \subseteq \mathcal{O}_{K_{\ell}} \) en el anillo de enteros algebraicos de \( K_{\ell} \), denotamos por \( S_{\mathfrak{p},\ell} \) todas las extensiones de Galois de \( K_{\ell} \) de grado \( \ell \) donde \( \mathfrak{p} \) no se escinde. Sea \( L_{\mathfrak{p},\ell} \) el compositum de los cuerpos de clases de Hilbert de los cuerpos de \( S_{\mathfrak{p},\ell} \). En este trabajo mostramos que \( L_{\mathfrak{p},\ell} \) satisface la propiedad de Bogomolov analizando ciertos grados locales sobre \( K_{\ell} \). También estudiamos la relación de \( L_{\mathfrak{p},\ell} \) con otras familias existentes en la literatura que satisfacen la propiedad de Bogomolov en el caso \( \ell = 2 \).

Keywords

Heights , Bogomolov property , local degrees

Mathematics Subject Classification:

11G50 , 11S15
  • Pages: 191–207
  • Date Published: 2025-08-15
  • In Press

F. Amoroso, S. David, y U. Zannier, “On fields with property (B),” Proceedings of the American Mathematical Society, vol. 142, no. 6, pp. 1893–1910, 2014, doi: 10.1090/S0002-9939-2014-11925-3.

F. Amoroso y U. Zannier, “A relative Dobrowolski lower bound over abelian extensions,” Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, vol. 29, no. 3, pp. 711–727, 2000.

E. Bombieri y W. Gubler, Heights in Diophantine geometry. Cambridge university press, 2006.

E. Bombieri y U. Zannier, “A note on heights in certain infinite extensions of Q,” Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, vol. 12, no. 1, pp. 5–14, 2001.

S. Checcoli, “Fields of algebraic numbers with bounded local degrees and their properties,” Transactions of the American Mathematical Society, vol. 365, no. 4, pp. 2223–2240, 2013, doi: 10.1090/S0002-9947-2012-05712-6.

D. Cox, Primes of the Form x2 +ny2: Fermat, Class Field Theory, and Complex Multiplication, 2nd ed., ser. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts. Wiley, 2014.

E. Dobrowolski, “On a question of Lehmer and the number of irreducible factors of a polynomial,” Acta Arithmetica, vol. 34, no. 4, pp. 391–401, 1979.

A. Galateau, “Small height in fields generated by singular moduli,” Proceedings of the American Mathematical Society, vol. 144, no. 7, pp. 2771–2786, 2016, doi: 10.1090/proc/13058.

P. Habegger, “Small height and infinite nonabelian extensions,” Duke Mathematical Journal, vol. 162, no. 11, pp. 2027 – 2076, 2013, doi: 10.1215/00127094-2331342.

K. Ireland y M. Rosen, A classical introduction to modern number theory. York, NY, 1982, vol. 84 (First edition), doi: 10.1007/978-1-4757-1779-2. Springer New

G. J. Janusz, Algebraic number fields. edition). American Mathematical Society, 1996, vol. 7 (Second

D. H. Lehmer, “Factorization of certain cyclotomic functions,” Annals of Mathematics, vol. 34, no. 3, pp. 461–479, 1933, doi: 10.2307/1968172.

S. Louboutin, “L-functions and class numbers of imaginary quadratic fields and of quadratic extensions of an imaginary quadratic field,” Mathematics of Computation, vol. 59, no. 199, pp. 213–230, 1992, doi: 10.2307/2152992.

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., ser. Springer Monographs in Mathematics. Springer Berlin, Heidelberg, 2004, doi: 10.1007/978-3-662-07001-7.

J. Neukirch, Algebraic number theory. Springer Berlin, Heidelberg, 1999, vol. 322.

F. Pappalardi, “On the exponent of the ideal class group of Q(√−d),” Proceedings of the American Mathematical Society, vol. 123, no. 3, pp. 663–671, 1995, doi: 10.2307/2160784.

A. Schinzel, “On the product of the conjugates outside the unit circle of an algebraic number,” Acta Arithmetica, vol. 24, no. 4, pp. 385–399, 1973.

J.-P. Serre, “Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,” Inventiones mathematicae, vol. 15, pp. 259–331, 1971, doi:10.1007/BF01405086.

J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed. doi: 10.1007/978-0-387-09494-6.

C. Smyth, “The Mahler measure of algebraic numbers: a survey,” in Number theory and polynomials. Proceedings of the workshop, Bristol, UK, April 3–7, 2006. Cambridge: Cambridge University Press, 2008, pp. 322–349, doi: 10.1017/CBO9780511721274.021.

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.

Downloads

Download data is not yet available.

Published

2025-08-15

How to Cite

[1]
B. Castillo, “Algunas extensiones infinitas de \(\mathbb{Q}\) con la propiedad de Bogomolov: Some infinite extensions of \(\mathbb{Q}\) satisfying Bogomolov’s property”, CUBO, pp. 191–207, Aug. 2025.

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.