Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat
A simple observation concerning the vector of Riemann constants and non-special divisors of generalized Fermat curves
-
Rubén A. Hidalgo
ruben.hidalgo@ufrontera.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.209Abstract
A closed Riemann surface \( S \) is called a generalized Fermat curve of type \( (k,n) \), where \( k,n \geq 2 \) are integers such that \( (k-1)(n-1) > 2 \), if it admits a group \( H \cong \mathbb{Z}_{k}^{n} \) of conformal automorphisms such that the quotient orbifold \( S/H \) has genus zero and has exactly \( n+1 \) conical points, each of them of order \( k \).
If an element of \( H \), of order \( k \), has fixed points, then it has exactly \( k^{\,n-1} \) fixed points, say \( q_{1}, \ldots, q_{k^{\,n-1}} \in S \). To each \( q_{j} \) we associate its vector of Riemann constants \( -2{\mathcal K}_{q_{j}} \in JS \), where \( JS \) is the Jacobian variety of \( S \). Our first observation is that \( {\mathcal K}_{q_{1}} + \cdots + {\mathcal K}_{q_{k^{\,n-1}}} \) is an order two torsion point in \( JS \).
Let \( D \) be an effective divisor of degree \( g_{k,n} \), the genus of \( S \). We observe that \( D \) cannot be \( H \)-invariant. In the case that \( D \) is supported on the fixed points of the non-trivial elements of \( H \), then we obtain algebraic conditions, necessary and sufficient, for \( D \) to be non-special.
ResumenUna superficie de Riemann cerrada \( S \) es llamada una curva generalizada de Fermat de tipo \( (k,n) \), donde \( k,n \geq 2 \) son enteros tales que \( (k-1)(n-1) > 2 \), si admite un grupo \( H \cong \mathbb{Z}_{k}^{n} \) de automorfismos conformes de manera que el orbifold cociente \( S/H \) sea de género cero y tenga exactamente \( n+1 \) puntos cónicos, cada uno de ellos de orden \( k \).
Si un elemento de \( H \), de orden \( k \), tiene puntos fijos, entonces tiene exactamente \( k^{\,n-1} \) puntos fijos, digamos \( q_{1}, \ldots, q_{k^{\,n-1}} \in S \). Por cada \( q_{j} \) tenemos asociado su vector de constantes de Riemann \( -2{\mathcal K}_{q_{j}} \in JS \), donde \( JS \) es la variedad jacobiana de \( S \). Nuestra primera observación es que \( {\mathcal K}_{q_{1}} + \cdots + {\mathcal K}_{q_{k^{\,n-1}}} \) es un punto de torsión de orden dos en \( JS \).
Sea \( D \) un divisor efectivo de grado \( g_{k,n} \), el género de \( S \). Observamos que \( D \) no puede ser \( H \)-invariante. En el caso que \( D \) tenga soporte en los puntos fijos de los elementos no triviales de \( H \), entonces obtenemos condiciones algebraicas, necesarias y suficientes, para que \( D \) sea no especial.
Keywords
Mathematics Subject Classification:
M. Bershadsky and A. Radul, “Conformal field theories with additional ZN symmetry,” Int. J. Mod. Phys. A, vol. 2, no. 1, pp. 165–178, 1987, doi: 10.1142/S0217751X87000053.
M. Bershadsky and A. Radul, “Fermionic fields on ZN-curves,” Commun. Math. Phys., vol. 116, no. 4, pp. 689–700, 1988, doi: 10.1007/BF01224908.
A. Eisenmann and H. M. Farkas, “An elementary proof of Thomae’s formulae,” Online J. Anal. Comb., vol. 3, p. 14, 2008, Art. ID 2.
V. Z. Enolski and T. Grava, “Thomae type formulae for singular ZN curves,” Lett. Math. Phys., vol. 76, no. 2-3, pp. 187–214, 2006, doi: 10.1007/s11005-006-0073-7.
H. M. Farkas and I. Kra, Riemann surfaces., 2nd ed., ser. Grad. Texts Math. Springer-Verlag, 1992, vol. 71, doi: 10.1007/978-1-4612-2034-3.
New York etc.:
H. M. Farkas and S. Zemel, Generalizations of Thomae’s formula for Zn curves, ser. Dev. Math. Berlin: Springer, 2011, vol. 21, doi: 10.1007/978-1-4419-7847-9.
G. Frobenius, “Ueber die constanten Factoren der Thetareihen,” J. Reine Angew. Math., vol. 98, pp. 244–263, 1885, doi: 10.1515/crll.1885.98.244.
G. González-Diez, “Non-special divisors supported on the branch set of a p-gonal Riemann surface,” in Geometry of Riemann surfaces. Proceedings of the Anogia conference to celebrate the 65th birthday of William J. Harvey, Anogia, Crete, Greece, June–July 2007. Cambridge:
Cambridge University Press, 2010, pp. 238–259.
G. González-Diez, R. A. Hidalgo, and M. Leyton, “Generalized Fermat curves,” J. Algebra, vol. 321, no. 6, pp. 1643–1660, 2009, doi: 10.1016/j.jalgebra.2009.01.002.
R. A. Hidalgo, “Holomorphic differentials of generalized Fermat curves,” J. Number Theory, vol. 217, pp. 78–101, 2020, doi: 10.1016/j.jnt.2020.05.014.
R. A. Hidalgo,“Homology group automorphisms of Riemann surfaces,” Mosc. Math. J.,vol.23, no. 1, pp. 113–120, 2023.
R. A. Hidalgo, A. Kontogeorgis, M. Leyton-Álvarez, and P. Paramantzoglou, “Automorphisms of generalized Fermat curves,” J. Pure Appl. Algebra, vol. 221, no. 9, pp. 2312–2337, 2017, doi: 10.1016/j.jpaa.2016.12.011.
K. Karagiannis, “Representations on canonical models of generalized Fermat curves and their syzygies,” 2023, arXiv:2304.02990.
Y. Kopeliovich and S. Zemel, “On spaces associated with invariant divisors on Galois covers of Riemann surfaces and their applications,” Isr. J. Math., vol. 234, no. 1, pp. 393–450, 2019, doi: 10.1007/s11856-019-1946-7.
D. Piponi, “A generalization of Thomae’s formula for cyclic covers of the sphere, ph.d. dissertation,” Ph.D. dissertation, King’s College London, 1993, thesis supervised by W.J. Harvey.
J. Thomae, “Beitrag zur Bestimmung von ϑ(0,0,...0) durch die Klassenmoduln algebraischer Functionen,” J. Reine Angew. Math., vol. 71, pp. 201–222, doi: 10.1515/crll.1870.71.201.
J. Thomae, “Bestimmung von dlg ϑ(0,0,...0) durch die Classenmoduln,” J. Reine Angew. Math., vol. 66, pp. 92–96, doi: 10.1515/crll.1866.66.92.
S. Zemel, “Thomae formulae for general fully ramified zn curves,” J. Anal. Math., vol. 131, pp. 101–158, doi: 10.1007/s11854-017-0004-9.
- Fondecyt 1230001 (ANID)
Most read articles by the same author(s)
- Rubén A. Hidalgo, The structure of extended function groups , CUBO, A Mathematical Journal: Vol. 23 No. 3 (2021)
- Rubén A. Hidalgo, Totally Degenerate Extended Kleinian Groups , CUBO, A Mathematical Journal: Vol. 19 No. 3 (2017): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, A short note on ð‘€-symmetric hyperelliptic Riemann surfaces * , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Rubén A. Hidalgo, Kleinian Groups with Common Commutator Subgroup , CUBO, A Mathematical Journal: No. 10 (1994): CUBO, Revista de Matemática
Similar Articles
- P. Brückmann, Tensor Differential Forms and Some Birational Invariants of Projective Manifolds , CUBO, A Mathematical Journal: Vol. 7 No. 1 (2005): CUBO, A Mathematical Journal
- Paul A. Milewski, The Forced Korteweg–de Vries Equation as a Model for Waves Generated by Topography , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- J¨orn Steuding, The Fibonacci Zeta-Function is Hypertranscendental , CUBO, A Mathematical Journal: Vol. 10 No. 3 (2008): CUBO, A Mathematical Journal
- Miklos N. Szilagyi, ð‘-Person Games with Crossing Externalities , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Jacqueline Rojas, Ramon Mendoza, Eben da Silva, Projective Squares in â„™² and Bott‘s Localization Formula , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- E. Ballico, Brill-Noether Theories for Rank 1 Sheaves on Mg , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- Takahiro Sudo, Real and stable ranks for certain crossed products of Toeplitz algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Philip J. Maher, Mohammad Sal Moslehian, More on approximate operators , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- Takahiro Sudo, Computing the inverse Laplace transform for rational functions vanishing at infinity , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 R. A. Hidalgo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.