Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat

A simple observation concerning the vector of Riemann constants and non-special divisors of generalized Fermat curves

Downloads

DOI:

https://doi.org/10.56754/0719-0646.2702.209

Abstract

A closed Riemann surface \( S \) is called a generalized Fermat curve of type \( (k,n) \), where \( k,n \geq 2 \) are integers such that \( (k-1)(n-1) > 2 \), if it admits a group \( H \cong \mathbb{Z}_{k}^{n} \) of conformal automorphisms such that the quotient orbifold \( S/H \) has genus zero and has exactly \( n+1 \) conical points, each of them of order \( k \).

If an element of \( H \), of order \( k \), has fixed points, then it has exactly \( k^{\,n-1} \) fixed points, say \( q_{1}, \ldots, q_{k^{\,n-1}} \in S \). To each \( q_{j} \) we associate its vector of Riemann constants \( -2{\mathcal K}_{q_{j}} \in JS \), where \( JS \) is the Jacobian variety of \( S \). Our first observation is that \( {\mathcal K}_{q_{1}} + \cdots + {\mathcal K}_{q_{k^{\,n-1}}} \) is an order two torsion point in \( JS \).

Let \( D \) be an effective divisor of degree \( g_{k,n} \), the genus of \( S \). We observe that \( D \) cannot be \( H \)-invariant. In the case that \( D \) is supported on the fixed points of the non-trivial elements of \( H \), then we obtain algebraic conditions, necessary and sufficient, for \( D \) to be non-special.

Resumen

Una superficie de Riemann cerrada \( S \) es llamada una curva generalizada de Fermat de tipo \( (k,n) \), donde \( k,n \geq 2 \) son enteros tales que \( (k-1)(n-1) > 2 \), si admite un grupo \( H \cong \mathbb{Z}_{k}^{n} \) de automorfismos conformes de manera que el orbifold cociente \( S/H \) sea de género cero y tenga exactamente \( n+1 \) puntos cónicos, cada uno de ellos de orden \( k \).

Si un elemento de \( H \), de orden \( k \), tiene puntos fijos, entonces tiene exactamente \( k^{\,n-1} \) puntos fijos, digamos \( q_{1}, \ldots, q_{k^{\,n-1}} \in S \). Por cada \( q_{j} \) tenemos asociado su vector de constantes de Riemann \( -2{\mathcal K}_{q_{j}} \in JS \), donde \( JS \) es la variedad jacobiana de \( S \). Nuestra primera observación es que \( {\mathcal K}_{q_{1}} + \cdots + {\mathcal K}_{q_{k^{\,n-1}}} \) es un punto de torsión de orden dos en \( JS \).

Sea \( D \) un divisor efectivo de grado \( g_{k,n} \), el género de \( S \). Observamos que \( D \) no puede ser \( H \)-invariante. En el caso que \( D \) tenga soporte en los puntos fijos de los elementos no triviales de \( H \), entonces obtenemos condiciones algebraicas, necesarias y suficientes, para que \( D \) sea no especial.

Keywords

Algebraic curves , Riemann surface , automorphisms

Mathematics Subject Classification:

30F10 , 14H37 , 14H10 , 14H45
  • Pages: 209–231
  • Date Published: 2025-08-18
  • In Press

M. Bershadsky and A. Radul, “Conformal field theories with additional ZN symmetry,” Int. J. Mod. Phys. A, vol. 2, no. 1, pp. 165–178, 1987, doi: 10.1142/S0217751X87000053.

M. Bershadsky and A. Radul, “Fermionic fields on ZN-curves,” Commun. Math. Phys., vol. 116, no. 4, pp. 689–700, 1988, doi: 10.1007/BF01224908.

A. Eisenmann and H. M. Farkas, “An elementary proof of Thomae’s formulae,” Online J. Anal. Comb., vol. 3, p. 14, 2008, Art. ID 2.

V. Z. Enolski and T. Grava, “Thomae type formulae for singular ZN curves,” Lett. Math. Phys., vol. 76, no. 2-3, pp. 187–214, 2006, doi: 10.1007/s11005-006-0073-7.

H. M. Farkas and I. Kra, Riemann surfaces., 2nd ed., ser. Grad. Texts Math. Springer-Verlag, 1992, vol. 71, doi: 10.1007/978-1-4612-2034-3.

New York etc.:

H. M. Farkas and S. Zemel, Generalizations of Thomae’s formula for Zn curves, ser. Dev. Math. Berlin: Springer, 2011, vol. 21, doi: 10.1007/978-1-4419-7847-9.

G. Frobenius, “Ueber die constanten Factoren der Thetareihen,” J. Reine Angew. Math., vol. 98, pp. 244–263, 1885, doi: 10.1515/crll.1885.98.244.

G. González-Diez, “Non-special divisors supported on the branch set of a p-gonal Riemann surface,” in Geometry of Riemann surfaces. Proceedings of the Anogia conference to celebrate the 65th birthday of William J. Harvey, Anogia, Crete, Greece, June–July 2007. Cambridge:

Cambridge University Press, 2010, pp. 238–259.

G. González-Diez, R. A. Hidalgo, and M. Leyton, “Generalized Fermat curves,” J. Algebra, vol. 321, no. 6, pp. 1643–1660, 2009, doi: 10.1016/j.jalgebra.2009.01.002.

R. A. Hidalgo, “Holomorphic differentials of generalized Fermat curves,” J. Number Theory, vol. 217, pp. 78–101, 2020, doi: 10.1016/j.jnt.2020.05.014.

R. A. Hidalgo,“Homology group automorphisms of Riemann surfaces,” Mosc. Math. J.,vol.23, no. 1, pp. 113–120, 2023.

R. A. Hidalgo, A. Kontogeorgis, M. Leyton-Álvarez, and P. Paramantzoglou, “Automorphisms of generalized Fermat curves,” J. Pure Appl. Algebra, vol. 221, no. 9, pp. 2312–2337, 2017, doi: 10.1016/j.jpaa.2016.12.011.

K. Karagiannis, “Representations on canonical models of generalized Fermat curves and their syzygies,” 2023, arXiv:2304.02990.

Y. Kopeliovich and S. Zemel, “On spaces associated with invariant divisors on Galois covers of Riemann surfaces and their applications,” Isr. J. Math., vol. 234, no. 1, pp. 393–450, 2019, doi: 10.1007/s11856-019-1946-7.

D. Piponi, “A generalization of Thomae’s formula for cyclic covers of the sphere, ph.d. dissertation,” Ph.D. dissertation, King’s College London, 1993, thesis supervised by W.J. Harvey.

J. Thomae, “Beitrag zur Bestimmung von ϑ(0,0,...0) durch die Klassenmoduln algebraischer Functionen,” J. Reine Angew. Math., vol. 71, pp. 201–222, doi: 10.1515/crll.1870.71.201.

J. Thomae, “Bestimmung von dlg ϑ(0,0,...0) durch die Classenmoduln,” J. Reine Angew. Math., vol. 66, pp. 92–96, doi: 10.1515/crll.1866.66.92.

S. Zemel, “Thomae formulae for general fully ramified zn curves,” J. Anal. Math., vol. 131, pp. 101–158, doi: 10.1007/s11854-017-0004-9.

  • Fondecyt 1230001 (ANID)

Downloads

Download data is not yet available.

Published

2025-08-18

How to Cite

[1]
R. A. Hidalgo, “Una observación sencilla sobre vectores de constantes de Riemann y divisores no-especiales de curvas generalizadas de Fermat: A simple observation concerning the vector of Riemann constants and non-special divisors of generalized Fermat curves”, CUBO, pp. 209–231, Aug. 2025.

Issue

Section

Articles