Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \)
Special parameters and linear deformations of the family \( (\wp(z))^2 + c \)
-
Adrián Esparza-Amador
adrian.esparza@uach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.307Abstract
In this work, we examine the space of parameters of a family of elliptic functions of order four. For the case of square, rectangular, and triangular lattices, we determine parameters for which the Fatou set is empty, consists of an attractive component, or consists of a parabolic component.
ResumenEn este trabajo, examinamos el espacio de parámetros de una familia de funciones elípticas de orden cuatro. Para el caso de retículas cuadradas, rectangulares y triangulares, determinamos parámetros para los cuales el conjunto de Fatou es vacío, consta de una componente atractora, o bien consta de una componente parabólica.
Keywords
Mathematics Subject Classification:
I. N. Baker, J. Kotus, y L. Yinian, “Iterates of meromorphic functions. I,” Ergodic Theory Dynam. Systems, vol. 11, no. 2, pp. 241–248, 1991, doi: 10.1017/S014338570000612X.
W. Bergweiler, “Iteration of meromorphic functions,” Bull. Amer. Math. Soc. (N.S.), vol. 29, no. 2, pp. 151–188, 1993, doi: 10.1090/S0273-0979-1993-00432-4.
B. Branner y N. Fagella, Quasiconformal surgery in holomorphic dynamics, ser. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2014, vol. 141.
P. Du Val, Elliptic functions and elliptic curves, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, London-New York, 1973, vol. No. 9.
A. E. Erëmenko y M. Y. Lyubich, “Dynamical properties of some classes of entire functions,” Ann. Inst. Fourier (Grenoble), vol. 42, no. 4, pp. 989–1020, 1992, doi: 10.5802/aif.1318.
J. Hawkins, “Smooth Julia sets of elliptic functions for square rhombic lattices,” 2006, vol. 30, no. 1, pp. 265–278, spring Topology and Dynamical Systems Conference.
J. Hawkins y L. Koss, “Ergodic properties and Julia sets of Weierstrass elliptic functions,” Monatsh. Math., vol. 137, no. 4, pp. 273–300, 2002, doi: 10.1007/s00605-002-0504-1.
J. Hawkins y L. Koss, “Parametrized dynamics of the Weierstrass elliptic function,” Conform. Geom. Dyn., vol. 8, pp. 1–35, 2004, doi: 10.1090/S1088-4173-04-00103-1.
J. Hawkins y L. Koss, “Connectivity properties of Julia sets of Weierstrass elliptic functions,” Topology Appl., vol. 152, no. 1-2, pp. 107–137, 2005, doi: 10.1016/j.topol.2004.08.018.
J. Hawkins, L. Koss, y J. Kotus, “Elliptic functions with critical orbits approaching infinity,” J. Difference Equ. Appl., vol. 16, no. 5-6, pp. 613–630, 2010, doi: 10.1080/10236190903203895.
J. Hawkins y M. Moreno Rocha, “Dynamics and Julia set of iterated elliptic functions”, New York J. Math., vol. 24, pp. 947–979, 2018.
G. A. Jones y D. Singerman, Complex functions. Cambridge University Press, Cambridge, 1987, doi: 10.1017/CBO9781139171915.
L. Koss, “Examples of parametrized families of elliptic functions with empty Fatou sets,” New York J. Math., vol. 20, pp. 607–625, 2014.
L. Koss y K. Roy, “Dynamics of vertical real rhombic Weierstrass elliptic functions”, Involve, vol. 10, no. 3, pp. 361–378, 2017, doi: 10.2140/involve.2017.10.361.
J. Kotus, “Elliptic functions with critical points eventually mapped onto infinity,” Monatsh. Math., vol. 149, no. 2, pp. 103–117, 2006, doi: 10.1007/s00605-005-0373-5.
J. Kotus y M. Urbański, “Hausdorff dimension and Hausdorff measures of Julia sets of elliptic functions,” Bull. London Math. Soc., vol. 35, no. 2, pp. 269–275, 2003, doi: 10.1112/S0024609302001686.
J. Kotus y M. Urbański, “Fractal measures and ergodic theory of transcendental meromorphic functions,” in Transcendental dynamics and complex analysis, ser. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2008, vol. 348, pp. 251–316, doi: 10.1017/CBO9780511735233.013.
J. Milnor, “On lattès maps,” in Dynamics on the Riemann sphere. Eur. Math. Soc., Zürich, 2006, pp. 9–43, doi: 10.4171/011-1/1.
M. Moreno Rocha y P. Pérez Lucas, “A class of even elliptic functions with no Herman rings,” Topology Proc., vol. 48, pp. 151–162, 2016.
Similar Articles
- N. Seshagiri Rao, K. Kalyani, Kejal Khatri, Contractive mapping theorems in Partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 22 No. 2 (2020)
- Roberto Dieci, Gian-Italo Bishi, Laura Gardini, Routes to Complexity in a Macroeconomic Model Described by a Noninvertible Triangular Map , CUBO, A Mathematical Journal: Vol. 5 No. 3 (2003): CUBO, Matemática Educacional
- Pertti Mattila, Search for geometric criteria for removable sets of bounded analytic functions , CUBO, A Mathematical Journal: Vol. 6 No. 4 (2004): CUBO, A Mathematical Journal
- R. Devi, A. Selvakumar, M. Parimala, S. Jafari, On strongly α-ð˜-ð˜–ð‘ð‘’ð‘› sets and a new mapping , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Robert M. Yamaleev, Evolutionary method of construction of solutions of polynomials and related generalized dynamics , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Chia-chi Tung, On Semisubmedian Functions and Weak Plurisubharmonicity , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Jean M. Tchuenche, A Uniqueness Theorem in an Age-Physiology Dependent Population Dynamics , CUBO, A Mathematical Journal: Vol. 8 No. 2 (2006): CUBO, A Mathematical Journal
- Takashi Noiri, Valeriu Popa, A note on modifications of \(rg\)-closed sets in topological spaces , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adrián Esparza-Amador

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.