Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \)
Special parameters and linear deformations of the family \( (\wp(z))^2 + c \)
-
Adrián Esparza-Amador
adrian.esparza@uach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.307Abstract
In this work, we examine the space of parameters of a family of elliptic functions of order four. For the case of square, rectangular, and triangular lattices, we determine parameters for which the Fatou set is empty, consists of an attractive component, or consists of a parabolic component.
ResumenEn este trabajo, examinamos el espacio de parámetros de una familia de funciones elípticas de orden cuatro. Para el caso de retículas cuadradas, rectangulares y triangulares, determinamos parámetros para los cuales el conjunto de Fatou es vacío, consta de una componente atractora, o bien consta de una componente parabólica.
Keywords
Mathematics Subject Classification:
I. N. Baker, J. Kotus, y L. Yinian, “Iterates of meromorphic functions. I,” Ergodic Theory Dynam. Systems, vol. 11, no. 2, pp. 241–248, 1991, doi: 10.1017/S014338570000612X.
W. Bergweiler, “Iteration of meromorphic functions,” Bull. Amer. Math. Soc. (N.S.), vol. 29, no. 2, pp. 151–188, 1993, doi: 10.1090/S0273-0979-1993-00432-4.
B. Branner y N. Fagella, Quasiconformal surgery in holomorphic dynamics, ser. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2014, vol. 141.
P. Du Val, Elliptic functions and elliptic curves, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, London-New York, 1973, vol. No. 9.
A. E. Erëmenko y M. Y. Lyubich, “Dynamical properties of some classes of entire functions,” Ann. Inst. Fourier (Grenoble), vol. 42, no. 4, pp. 989–1020, 1992, doi: 10.5802/aif.1318.
J. Hawkins, “Smooth Julia sets of elliptic functions for square rhombic lattices,” 2006, vol. 30, no. 1, pp. 265–278, spring Topology and Dynamical Systems Conference.
J. Hawkins y L. Koss, “Ergodic properties and Julia sets of Weierstrass elliptic functions,” Monatsh. Math., vol. 137, no. 4, pp. 273–300, 2002, doi: 10.1007/s00605-002-0504-1.
J. Hawkins y L. Koss, “Parametrized dynamics of the Weierstrass elliptic function,” Conform. Geom. Dyn., vol. 8, pp. 1–35, 2004, doi: 10.1090/S1088-4173-04-00103-1.
J. Hawkins y L. Koss, “Connectivity properties of Julia sets of Weierstrass elliptic functions,” Topology Appl., vol. 152, no. 1-2, pp. 107–137, 2005, doi: 10.1016/j.topol.2004.08.018.
J. Hawkins, L. Koss, y J. Kotus, “Elliptic functions with critical orbits approaching infinity,” J. Difference Equ. Appl., vol. 16, no. 5-6, pp. 613–630, 2010, doi: 10.1080/10236190903203895.
J. Hawkins y M. Moreno Rocha, “Dynamics and Julia set of iterated elliptic functions”, New York J. Math., vol. 24, pp. 947–979, 2018.
G. A. Jones y D. Singerman, Complex functions. Cambridge University Press, Cambridge, 1987, doi: 10.1017/CBO9781139171915.
L. Koss, “Examples of parametrized families of elliptic functions with empty Fatou sets,” New York J. Math., vol. 20, pp. 607–625, 2014.
L. Koss y K. Roy, “Dynamics of vertical real rhombic Weierstrass elliptic functions”, Involve, vol. 10, no. 3, pp. 361–378, 2017, doi: 10.2140/involve.2017.10.361.
J. Kotus, “Elliptic functions with critical points eventually mapped onto infinity,” Monatsh. Math., vol. 149, no. 2, pp. 103–117, 2006, doi: 10.1007/s00605-005-0373-5.
J. Kotus y M. Urbański, “Hausdorff dimension and Hausdorff measures of Julia sets of elliptic functions,” Bull. London Math. Soc., vol. 35, no. 2, pp. 269–275, 2003, doi: 10.1112/S0024609302001686.
J. Kotus y M. Urbański, “Fractal measures and ergodic theory of transcendental meromorphic functions,” in Transcendental dynamics and complex analysis, ser. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2008, vol. 348, pp. 251–316, doi: 10.1017/CBO9780511735233.013.
J. Milnor, “On lattès maps,” in Dynamics on the Riemann sphere. Eur. Math. Soc., Zürich, 2006, pp. 9–43, doi: 10.4171/011-1/1.
M. Moreno Rocha y P. Pérez Lucas, “A class of even elliptic functions with no Herman rings,” Topology Proc., vol. 48, pp. 151–162, 2016.
Similar Articles
- G. Palanichetty, G. Balasubramanian, On Some What Fuzzy Faintly Semicontinuous Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- V. Seenivasan, G. Balasubramanian, G. Thangaraj, Somewhat Fuzzy Semi ð›¼-Irresolute Functions , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Xiaoling Liu, Dehui Yuan, Shengyun Yang, Guoming Lai, Chuanqing Xu, Multiple objective programming involving differentiable (ð›¨áµ¨, ð˜³)-invex functions , CUBO, A Mathematical Journal: Vol. 13 No. 1 (2011): CUBO, A Mathematical Journal
- Ennis Rosas, Carlos Carpintero, Sabir Hussain, (i, j)-ω-semiopen sets and (i, j)-ω-semicontinuity in bitopological spaces , CUBO, A Mathematical Journal: Vol. 17 No. 3 (2015): CUBO, A Mathematical Journal
- B. Bhowmik, K.-J. Wirths, S. Ponnusamy, On some problems of James Miller , CUBO, A Mathematical Journal: Vol. 12 No. 1 (2010): CUBO, A Mathematical Journal
- B. K. Tyagi, Sheetal Luthra, Harsh V. S. Chauhan, On New Types of Sets Via γ-open Sets in (ð‘Ž)Topological Spaces , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Juan Bobenrieth, Simetría de los conjuntos de Julia de la familia ð“ ⟼ ð“áµ + ð’¸ , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- Amar Kumar Banerjee, Pratap Kumar Saha, Semi Open sets in bispaces , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Mohsen Razzaghi, Hamid-Reza Marzban, Hybrid Functions in the Calculus of Variations , CUBO, A Mathematical Journal: Vol. 4 No. 1 (2002): CUBO, Matemática Educacional
- Renukadevi S. Dyavanal, Ashwini M. Hattikal, Madhura M. Mathai, Uniqueness of meromorphic functions sharing a set in annuli , CUBO, A Mathematical Journal: Vol. 18 No. 1 (2016): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adrián Esparza-Amador

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.