Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \)
Special parameters and linear deformations of the family \( (\wp(z))^2 + c \)
-
Adrián Esparza-Amador
adrian.esparza@uach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2702.307Abstract
In this work, we examine the space of parameters of a family of elliptic functions of order four. For the case of square, rectangular, and triangular lattices, we determine parameters for which the Fatou set is empty, consists of an attractive component, or consists of a parabolic component.
ResumenEn este trabajo, examinamos el espacio de parámetros de una familia de funciones elípticas de orden cuatro. Para el caso de retículas cuadradas, rectangulares y triangulares, determinamos parámetros para los cuales el conjunto de Fatou es vacío, consta de una componente atractora, o bien consta de una componente parabólica.
Keywords
Mathematics Subject Classification:
I. N. Baker, J. Kotus, y L. Yinian, “Iterates of meromorphic functions. I,” Ergodic Theory Dynam. Systems, vol. 11, no. 2, pp. 241–248, 1991, doi: 10.1017/S014338570000612X.
W. Bergweiler, “Iteration of meromorphic functions,” Bull. Amer. Math. Soc. (N.S.), vol. 29, no. 2, pp. 151–188, 1993, doi: 10.1090/S0273-0979-1993-00432-4.
B. Branner y N. Fagella, Quasiconformal surgery in holomorphic dynamics, ser. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2014, vol. 141.
P. Du Val, Elliptic functions and elliptic curves, ser. London Mathematical Society Lecture Note Series. Cambridge University Press, London-New York, 1973, vol. No. 9.
A. E. Erëmenko y M. Y. Lyubich, “Dynamical properties of some classes of entire functions,” Ann. Inst. Fourier (Grenoble), vol. 42, no. 4, pp. 989–1020, 1992, doi: 10.5802/aif.1318.
J. Hawkins, “Smooth Julia sets of elliptic functions for square rhombic lattices,” 2006, vol. 30, no. 1, pp. 265–278, spring Topology and Dynamical Systems Conference.
J. Hawkins y L. Koss, “Ergodic properties and Julia sets of Weierstrass elliptic functions,” Monatsh. Math., vol. 137, no. 4, pp. 273–300, 2002, doi: 10.1007/s00605-002-0504-1.
J. Hawkins y L. Koss, “Parametrized dynamics of the Weierstrass elliptic function,” Conform. Geom. Dyn., vol. 8, pp. 1–35, 2004, doi: 10.1090/S1088-4173-04-00103-1.
J. Hawkins y L. Koss, “Connectivity properties of Julia sets of Weierstrass elliptic functions,” Topology Appl., vol. 152, no. 1-2, pp. 107–137, 2005, doi: 10.1016/j.topol.2004.08.018.
J. Hawkins, L. Koss, y J. Kotus, “Elliptic functions with critical orbits approaching infinity,” J. Difference Equ. Appl., vol. 16, no. 5-6, pp. 613–630, 2010, doi: 10.1080/10236190903203895.
J. Hawkins y M. Moreno Rocha, “Dynamics and Julia set of iterated elliptic functions”, New York J. Math., vol. 24, pp. 947–979, 2018.
G. A. Jones y D. Singerman, Complex functions. Cambridge University Press, Cambridge, 1987, doi: 10.1017/CBO9781139171915.
L. Koss, “Examples of parametrized families of elliptic functions with empty Fatou sets,” New York J. Math., vol. 20, pp. 607–625, 2014.
L. Koss y K. Roy, “Dynamics of vertical real rhombic Weierstrass elliptic functions”, Involve, vol. 10, no. 3, pp. 361–378, 2017, doi: 10.2140/involve.2017.10.361.
J. Kotus, “Elliptic functions with critical points eventually mapped onto infinity,” Monatsh. Math., vol. 149, no. 2, pp. 103–117, 2006, doi: 10.1007/s00605-005-0373-5.
J. Kotus y M. Urbański, “Hausdorff dimension and Hausdorff measures of Julia sets of elliptic functions,” Bull. London Math. Soc., vol. 35, no. 2, pp. 269–275, 2003, doi: 10.1112/S0024609302001686.
J. Kotus y M. Urbański, “Fractal measures and ergodic theory of transcendental meromorphic functions,” in Transcendental dynamics and complex analysis, ser. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 2008, vol. 348, pp. 251–316, doi: 10.1017/CBO9780511735233.013.
J. Milnor, “On lattès maps,” in Dynamics on the Riemann sphere. Eur. Math. Soc., Zürich, 2006, pp. 9–43, doi: 10.4171/011-1/1.
M. Moreno Rocha y P. Pérez Lucas, “A class of even elliptic functions with no Herman rings,” Topology Proc., vol. 48, pp. 151–162, 2016.
Similar Articles
- K. Gürlebeck, J. Morais, On mapping properties of monogenic functions , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- Alessandro Perotti, Regular quaternionic functions and conformal mappings , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
- M. E. Luna, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
- E. Rosas, C. Carpintero, M. Salas, J. Sanabria, L. Vásquez, Almost ω-continuous functions defined by ω-open sets due to Arhangel‘ski ̆ı , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- P. Jeyanthi, P. Nalayini, T. Noiri, Pre-regular \(sp\)-open sets in topological spaces , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Abhijit Banerjee, Some uniqueness results on meromorphic functions sharing three sets II , CUBO, A Mathematical Journal: Vol. 13 No. 3 (2011): CUBO, A Mathematical Journal
- P. G. Patil, T. D. Rayanagoudar, S. S. Benchalli, Generalization of new continuous functions in Topological spaces , CUBO, A Mathematical Journal: Vol. 15 No. 3 (2013): CUBO, A Mathematical Journal
- José Sanabria, Edumer Acosta, Carlos Carpintero, Ennis Rosas, Continuity via ΛsI-open sets , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Moussa Barro, Sado Traoré, Level sets regularization with application to optimization problems , CUBO, A Mathematical Journal: Vol. 22 No. 1 (2020)
- Messaoud Bounkhel, Arc-wise Essentially Tangentially Regular Set-valued Mappings and their Applications to Nonconvex Sweeping Process , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Adrián Esparza-Amador

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.