Absolutely continuous spectrum preservation: A new proof for unitary operators under finite-rank multiplicative perturbations
-
Pablo A. Díaz
pablo.diaz@usach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.701Abstract
We will provide a new proof of the Birman-Krein theorem for unitary operators multiplicatively perturbed by finite-rank operators, which is nothing more than the Kato-Rosenblum theorem, but instead of self-adjoint operators. In other words, \(U\) is a unitary operator and \(X\) is a unitary operator given by a finite rank perturbation of the identity, i.e., \(X=\mathbf{1}+W\) with \(W\) finite rank. We show that \(U\) and its perturbed version \(UX\) (or \(XU\)) are unitarily equivalent on their absolutely continuous subspaces.
Keywords
Mathematics Subject Classification:
M. Š. Birman and M. G. Kreĭn, “On the theory of wave operators and scattering operators,” Dokl. Akad. Nauk SSSR, vol. 144, pp. 475–478, 1962.
L. de Branges and L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 23, pp. 294–326, 1968, doi: 10.1016/0022-247X(68)90069-3.
J. S. Howland, “On a theorem of Aronszajn and Donoghue on singular spectra,” Duke Math. J., vol. 41, pp. 141–143, 1974.
T. Kato, Perturbation theory for linear operators, ser. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1966, vol. 132.
L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 28, pp. 231–254, 1969, doi: 10.1016/0022-247X(69)90025-0.
L. Shulman, “Perturbations of unitary transformations,” Amer. J. Math., vol. 91, pp. 267–288, 1969, doi: 10.2307/2373282.
B. Simon, “Analogs of the m-function in the theory of orthogonal polynomials on the unit circle,” J. Comput. Appl. Math., vol. 171, no. 1–2, pp. 411–424, 2004, doi: 10.1016/j.cam.2004.01.022.
Similar Articles
- Aparajita Dasgupta, M.W. Wong, The semigroup and the inverse of the Laplacian on the Heisenberg group , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Toka Diagana, Khalil Ezzinbi, Mohsen Miraoui, Pseudo-almost periodic and pseudo-almost automorphic solutions to some evolution equations involving theoretical measure theory , CUBO, A Mathematical Journal: Vol. 16 No. 2 (2014): CUBO, A Mathematical Journal
- Takahiro Sudo, Continuous or Discontinuous Deformations of C*-Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 1 (2008): CUBO, A Mathematical Journal
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- A. Kaboré, S. Ouaro, Anisotropic problem with non-local boundary conditions and measure data , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Elke Wolf, Isometric weighted composition operators on weighted Banach spaces of holomorphic functions defined on the unit ball of a complex Banach space , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Razvan A. Mezei, Uniform convergence with rates of general singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 2 (2013): CUBO, A Mathematical Journal
- José Sánchez Henriquez, The ð‘‰â‚€ property in Banach Lattices , CUBO, A Mathematical Journal: No. 8 (1992): CUBO, Revista de Matemática
- L. P. Castro, A. S. Silva, Fredholm property of matrix Wiener-Hopf plus and minus Hankel operators with semi-almost periodic symbols , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. A. Diaz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











