Absolutely continuous spectrum preservation: A new proof for unitary operators under finite-rank multiplicative perturbations
-
Pablo A. Díaz
pablo.diaz@usach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.701Abstract
We will provide a new proof of the Birman-Krein theorem for unitary operators multiplicatively perturbed by finite-rank operators, which is nothing more than the Kato-Rosenblum theorem, but instead of self-adjoint operators. In other words, \(U\) is a unitary operator and \(X\) is a unitary operator given by a finite rank perturbation of the identity, i.e., \(X=\mathbf{1}+W\) with \(W\) finite rank. We show that \(U\) and its perturbed version \(UX\) (or \(XU\)) are unitarily equivalent on their absolutely continuous subspaces.
Keywords
Mathematics Subject Classification:
M. Š. Birman and M. G. Kreĭn, “On the theory of wave operators and scattering operators,” Dokl. Akad. Nauk SSSR, vol. 144, pp. 475–478, 1962.
L. de Branges and L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 23, pp. 294–326, 1968, doi: 10.1016/0022-247X(68)90069-3.
J. S. Howland, “On a theorem of Aronszajn and Donoghue on singular spectra,” Duke Math. J., vol. 41, pp. 141–143, 1974.
T. Kato, Perturbation theory for linear operators, ser. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1966, vol. 132.
L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 28, pp. 231–254, 1969, doi: 10.1016/0022-247X(69)90025-0.
L. Shulman, “Perturbations of unitary transformations,” Amer. J. Math., vol. 91, pp. 267–288, 1969, doi: 10.2307/2373282.
B. Simon, “Analogs of the m-function in the theory of orthogonal polynomials on the unit circle,” J. Comput. Appl. Math., vol. 171, no. 1–2, pp. 411–424, 2004, doi: 10.1016/j.cam.2004.01.022.
Similar Articles
- Ryuichi Ashino, Michihiro Nagase, Rémi Vaillancourt, Pseudodifferential operators in ð¿áµ–(â„â¿) , CUBO, A Mathematical Journal: Vol. 6 No. 3 (2004): CUBO, A Mathematical Journal
- Rubí E. Rodríguez, Anita M. Rojas, Matías Saavedra-Lagos, Representaciones lineales irreducibles de grupos finitos en cuerpos de números , CUBO, A Mathematical Journal: Vol. 27 No. 2 (2025): Spanish Edition (40th Anniversary)
- George A. Anastassiou, Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators , CUBO, A Mathematical Journal: Vol. 14 No. 3 (2012): CUBO, A Mathematical Journal
- Eduardo Montenegro, Graph with given automorphism group and given chromatic index , CUBO, A Mathematical Journal: No. 7 (1991): CUBO, Revista de Matemática
- Hugo Leiva, Jesús Matute, Nelson Merentes, José Sánchez, On a type of Volterra integral equation in the space of continuous functions with bounded variation valued in Banach spaces , CUBO, A Mathematical Journal: Vol. 17 No. 2 (2015): CUBO, A Mathematical Journal
- Paul W. Eloe, Positive Operators and Maximum Principles for Ordinary Differential Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- Giuseppe Gaeta, Further reduction of Poincaré-Dulac normal forms in symmetric systems , CUBO, A Mathematical Journal: Vol. 9 No. 3 (2007): CUBO, A Mathematical Journal
- Nadjet Abada, Mouffak Benchohra, Hadda Hammouche, Existence Results for Semilinear Differential Evolution Equations with Impulses and Delay , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Wolfgang Rump, The tree of primes in a field , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Taoufik Chitioui, Khalil Ezzinbi, Amor Rebey, Existence and stability in the α-norm for nonlinear neutral partial differential equations with finite delay , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. A. Diaz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










