Absolutely continuous spectrum preservation: A new proof for unitary operators under finite-rank multiplicative perturbations
-
Pablo A. Díaz
pablo.diaz@usach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.701Abstract
We will provide a new proof of the Birman-Krein theorem for unitary operators multiplicatively perturbed by finite-rank operators, which is nothing more than the Kato-Rosenblum theorem, but instead of self-adjoint operators. In other words, \(U\) is a unitary operator and \(X\) is a unitary operator given by a finite rank perturbation of the identity, i.e., \(X=\mathbf{1}+W\) with \(W\) finite rank. We show that \(U\) and its perturbed version \(UX\) (or \(XU\)) are unitarily equivalent on their absolutely continuous subspaces.
Keywords
Mathematics Subject Classification:
M. Š. Birman and M. G. Kreĭn, “On the theory of wave operators and scattering operators,” Dokl. Akad. Nauk SSSR, vol. 144, pp. 475–478, 1962.
L. de Branges and L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 23, pp. 294–326, 1968, doi: 10.1016/0022-247X(68)90069-3.
J. S. Howland, “On a theorem of Aronszajn and Donoghue on singular spectra,” Duke Math. J., vol. 41, pp. 141–143, 1974.
T. Kato, Perturbation theory for linear operators, ser. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1966, vol. 132.
L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 28, pp. 231–254, 1969, doi: 10.1016/0022-247X(69)90025-0.
L. Shulman, “Perturbations of unitary transformations,” Amer. J. Math., vol. 91, pp. 267–288, 1969, doi: 10.2307/2373282.
B. Simon, “Analogs of the m-function in the theory of orthogonal polynomials on the unit circle,” J. Comput. Appl. Math., vol. 171, no. 1–2, pp. 411–424, 2004, doi: 10.1016/j.cam.2004.01.022.
Similar Articles
- Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
- Colin Guillarmou, Scattering Theory on Geometrically Finite Quotients with Rational Cusps , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Alexander Pankov, Discrete almost periodic operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- Jean-François Bony, Vincent Bruneau, Philippe Briet, Georgi Raikov, Resonances and SSF Singularities for Magnetic Schrödinger Operators , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- Laurent Amour, Benoit Grébert, Jean-Claude Guillot, A mathematical model for the Fermi weak interactions , CUBO, A Mathematical Journal: Vol. 9 No. 2 (2007): CUBO, A Mathematical Journal
- Abdellatif Moudafi, Computing the resolvent of composite operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Patrícia Hess, Severino T. Melo, K-Theory of an Algebra of Pseudodifferential Operators on a Noncompact Manifold , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
- René Schott, G. Stacey Staples, Operator homology and cohomology in Clifford algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Takahiro Sudo, Real and stable ranks for certain crossed products of Toeplitz algebras , CUBO, A Mathematical Journal: Vol. 12 No. 2 (2010): CUBO, A Mathematical Journal
- Andrew Craig, Miroslav Haviar, José São João, Dual digraphs of finite semidistributive lattices , CUBO, A Mathematical Journal: Vol. 24 No. 3 (2022)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. A. Diaz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











