Absolutely continuous spectrum preservation: A new proof for unitary operators under finite-rank multiplicative perturbations
-
Pablo A. Díaz
pablo.diaz@usach.cl
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2703.701Abstract
We will provide a new proof of the Birman-Krein theorem for unitary operators multiplicatively perturbed by finite-rank operators, which is nothing more than the Kato-Rosenblum theorem, but instead of self-adjoint operators. In other words, \(U\) is a unitary operator and \(X\) is a unitary operator given by a finite rank perturbation of the identity, i.e., \(X=\mathbf{1}+W\) with \(W\) finite rank. We show that \(U\) and its perturbed version \(UX\) (or \(XU\)) are unitarily equivalent on their absolutely continuous subspaces.
Keywords
Mathematics Subject Classification:
M. Š. Birman and M. G. Kreĭn, “On the theory of wave operators and scattering operators,” Dokl. Akad. Nauk SSSR, vol. 144, pp. 475–478, 1962.
L. de Branges and L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 23, pp. 294–326, 1968, doi: 10.1016/0022-247X(68)90069-3.
J. S. Howland, “On a theorem of Aronszajn and Donoghue on singular spectra,” Duke Math. J., vol. 41, pp. 141–143, 1974.
T. Kato, Perturbation theory for linear operators, ser. Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag New York, Inc., New York, 1966, vol. 132.
L. Shulman, “Perturbations of unitary transformations,” J. Math. Anal. Appl., vol. 28, pp. 231–254, 1969, doi: 10.1016/0022-247X(69)90025-0.
L. Shulman, “Perturbations of unitary transformations,” Amer. J. Math., vol. 91, pp. 267–288, 1969, doi: 10.2307/2373282.
B. Simon, “Analogs of the m-function in the theory of orthogonal polynomials on the unit circle,” J. Comput. Appl. Math., vol. 171, no. 1–2, pp. 411–424, 2004, doi: 10.1016/j.cam.2004.01.022.
Similar Articles
- Takahiro Sudo, Spectral Rank for ð¶*-Algebras , CUBO, A Mathematical Journal: Vol. 10 No. 2 (2008): CUBO, A Mathematical Journal
- Gabriel M. Antón Marval, René E. Castillo, Julio C. Ramos-Fernández, Maximal functions and properties of the weighted composition operators acting on the Korenblum, α-Bloch and α-Zygmund spaces , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Peter Danchev, Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings , CUBO, A Mathematical Journal: Vol. 14 No. 1 (2012): CUBO, A Mathematical Journal
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Abdeldjalil Aouane, Smaïl Djebali, Mohamed Aziz Taoudi, Mild solutions of a class of semilinear fractional integro-differential equations subjected to noncompact nonlocal initial conditions , CUBO, A Mathematical Journal: Vol. 22 No. 3 (2020)
- Giuseppe Da Prato, Elliptic operators with infinitely many variables , CUBO, A Mathematical Journal: Vol. 6 No. 2 (2004): CUBO, A Mathematical Journal
- Aparajita Dasgupta, M.W. Wong, The semigroup and the inverse of the Laplacian on the Heisenberg group , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Mouffak Benchohra, Gaston M. N‘Guérékata, Djamila Seba, Measure of noncompactness and nondensely defined semilinear functional differential equations with fractional order , CUBO, A Mathematical Journal: Vol. 12 No. 3 (2010): CUBO, A Mathematical Journal
- Raoudha Laffi, Some inequalities associated with a partial differential operator , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 P. A. Diaz

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.











