Blow-up and global existence of solutions for a higher-order reaction diffusion equation with singular potential
-
Erhan Pişkin
episkin@dicle.edu.tr
-
Ayşe Fidan
afidanmat@gmail.com
-
Jorge Ferreira
ferreirajorge2012@gmail.com
-
Mohammad Shahrouzi
shahrouzi@um.ac.ir
Downloads
DOI:
https://doi.org/10.56754/0719-0646.2801.079Abstract
In this work, we consider the higher-order reaction-diffusion parabolic problem with time dependent coefficient. We prove the blow-up of solutions and obtain a lower and an upper bound for the blow-up time. Finally, we investigate the existence of a global weak solution to the problem.
Keywords
Mathematics Subject Classification:
R. A. Adams and J. J. F. Fournier, Sobolev spaces, 2nd ed., ser. Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, 2003, vol. 140.
A. B. Al’shin, M. O. Korpusov, and A. G. Sveshnikov, Blow-up in nonlinear Sobolev type equations, ser. De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 2011, vol. 15, doi: 10.1515/9783110255294.
A. A. Balinsky, W. D. Evans, and R. T. Lewis, The analysis and geometry of Hardy’s inequality, ser. Universitext. Springer, Cham, 2015, doi: 10.1007/978-3-319-22870-9.
G. Butakın and E. Pişkin, “Blow up of solutions for a fourth-order reaction-diffusion equation in variable-exponent Sobolev spaces,” Filomat, vol. 38, no. 23, pp. 8225–8242, 2024.
T. D. Do, N. N. Trong, and B. L. T. Thanh, “On a higher-order reaction-diffusion equation with a special medium void via potential well method,” Taiwanese J. Math., vol. 27, no. 1, pp. 53–79, 2023, doi: 10.11650/tjm/220703.
A. Fidan, E. Pişkin, and E. Celik, “Existence, decay, and blow-up of solutions for a weighted m-biharmonic equation with nonlinear damping and source terms,” J. Funct. Spaces, pp. 1–18, 2024, Art. ID 5866792, doi: 10.1155/2024/5866792.
V. A. Galaktionov, E. L. Mitidieri, and S. I. Pohozaev, Blow-up for higher-order parabolic, hyperbolic, dispersion and Schrödinger equations, ser. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015.
V. A. Galaktionov and J. L. Vázquez, “The problem of blow-up in nonlinear parabolic equations,” 2002, vol. 8, no. 2, pp. 399–433, current developments in partial differential equations (Temuco, 1999).
Y. Han, “Blow-up phenomena for a fourth-order parabolic equation with a general nonlinearity,” J. Dyn. Control Syst., vol. 27, no. 2, pp. 261–270, 2021, doi: 10.1007/s10883-020-09495-1.
Y. Han, “Blow-up phenomena for a reaction diffusion equation with special diffusion process,” Appl. Anal., vol. 101, no. 6, pp. 1971–1983, 2022, doi: 10.1080/00036811.2020.1792447.
B. Hu, Blow-up theories for semilinear parabolic equations, ser. Lecture Notes in Mathematics. Springer, Heidelberg, 2011, vol. 2018, doi: 10.1007/978-3-642-18460-4.
V. K. Kalantarov and O. A. Ladyzhenskaya, “The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types,” J. Soviet Math., vol. 10, pp. 53–70, 1978.
H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations,” Arch. Rational Mech. Anal., vol. 51, pp. 371–386, 1973.
J. Nečas, Direct Methods in the Theory of Elliptic Equations, ser. Springer Monographs in Mathematics. Heidelberg: Springer, 2012.
I. B. Omrane, S. Gala, J.-M. Kim, and M. A. Ragusa, “Logarithmically improved blow-up criterion for smooth solutions to the Leray-α-magnetohydrodynamic equations,” Arch. Math. (Brno), vol. 55, no. 1, pp. 55–68, 2019, doi: 10.1007/s00013-019-01312-5.
G. A. Philippin, “Blow-up phenomena for a class of fourth-order parabolic problems,” Proc. Amer. Math. Soc., vol. 143, no. 6, pp. 2507–2513, 2015.
E. Pişkin, Blow Up of Solutions of Evolution Equations. Pegem Publishing, 2022.
E. Pişkin and B. Okutmuştur, An Introduction to Sobolev Spaces. Bentham Science Publishers, 2021.
M. Shahrouzi, “Blow-up analysis for a class of higher-order viscoelastic inverse problem with positive initial energy and boundary feedback,” Ann. Mat. Pura Appl., vol.196, pp.1877–1886, 2017, doi: 10.1007/s10231-017-0644-5.
M. Shahrouzi, “Asymptotic behavior of solutions for a nonlinear viscoelastic higher-order p(x)-Laplacian equation with variable-exponent logarithmic source term,” Bol. Soc. Mat. Mexicana, vol. 29, 2023, Art. ID 77, doi: 10.1007/s40590-023-00551-x.
M. Shahrouzi, “Global existence and blow-up results for a nonlinear viscoelastic higher-order p(x)-Laplacian equation,” Int. J. Nonlinear Anal. Appl., 2025, in press, ISSN: 2008-6822 (electronic).
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, ser. Princeton Mathematical Series. Princeton: Princeton University Press, 1970, vol. 30.
B. L. T. Thanh, N. N. Trong, and T. D. Do, “Blow-up estimates for a higher-order reaction–diffusion equation with a special diffusion process,” Journal of Elliptic and Parabolic Equations, vol. 7, pp. 891–904, 2021.
B. L. T. Thanh, N. N. Trong, and T. D. Do, “Bounds on blow-up time for a higher-order non-Newtonian filtration equation,” Math. Slovaca, vol. 73, no. 3, pp. 749–760, 2023.
Similar Articles
- Adusei-Poku Afful, Ernest Yankson, Agnes Adom-Konadu, Existence and stability of solutions of totally nonlinear neutral Caputo q-fractional difference equations , CUBO, A Mathematical Journal: Vol. 27 No. 3 (2025)
- Hassan Sedaghat, Global Attractivity, Oscillations and Chaos in A Class of Nonlinear, Second Order Difference Equations , CUBO, A Mathematical Journal: Vol. 7 No. 2 (2005): CUBO, A Mathematical Journal
- George A. Anastassiou, Approximation by discrete singular operators , CUBO, A Mathematical Journal: Vol. 15 No. 1 (2013): CUBO, A Mathematical Journal
- George A. Anastassiou, Higher order multivariate Fuzzy approximation by basic neural network operators , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Alka Chadha, Dwijendra N Pandey, Periodic BVP for a class of nonlinear differential equation with a deviated argument and integrable impulses , CUBO, A Mathematical Journal: Vol. 17 No. 1 (2015): CUBO, A Mathematical Journal
- Saïd Abbas, Mouffak Benchohra, Jamal-Eddine Lazreg, Gaston M. N‘Guérékata, Hilfer and Hadamard functional random fractional differential inclusions , CUBO, A Mathematical Journal: Vol. 19 No. 1 (2017): CUBO, A Mathematical Journal
- Ioannis K. Argyros, Santhosh George, Ball comparison between Jarratt‘s and other fourth order method for solving equations , CUBO, A Mathematical Journal: Vol. 20 No. 3 (2018)
- George A. Anastassiou, Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators , CUBO, A Mathematical Journal: Vol. 20 No. 1 (2018)
- Mouffak Benchohra, Omar Bennihi, Khalil Ezzinbi, Existence Results for Some Neutral Partial Functional Differential Equations of Fractional order with State-Dependent Delay , CUBO, A Mathematical Journal: Vol. 16 No. 3 (2014): CUBO, A Mathematical Journal
- Sapan Kumar Nayak, P. K. Parida, Global convergence analysis of Caputo fractional Whittaker method with real world applications , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
<< < 1 2 3 4 5 6 7 8 9 10 11 12 > >>
You may also start an advanced similarity search for this article.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 E. Pişkin et al.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










