Solow models on time scales
- Martin Bohner bohner@mst.edu
- Julius Heim julius.heim@mst.edu
- Ailian Liu ailianliu2002@163.com
Downloads
DOI:
https://doi.org/10.4067/S0719-06462013000100002Abstract
We introduce a general Solow model on time scales and derive a nonlinear first-order dynamic equation that describes such a model. We first assume that there is neither technological development nor a change in the population. We present the Cobb– Douglas production function on time scales and use it to give the solution for the equation that describes the model. Next, we provide several applications of the generalized Solow model. Finally, we generalize our work by allowing technological development and population growth. The presented results not only unify the continuous and the discrete Solow models but also extend them to other cases “in between”, e.g., a quantum calculus version of the Solow model. Finally it is also noted that our results even generalize the classical continuous and discrete Solow models since we allow the savings rate, the depreciation factor of goods, the growth rate of the population, and the technological growth rates to be functions of time rather than taking constant values as in the classical Solow models.
Keywords
Similar Articles
- Liancheng Wang, Bo Yang, New upper estimate for positive solutions to a second order boundary value problem with a parameter , CUBO, A Mathematical Journal: Vol. 25 No. 1 (2023)
- A. Zerki, K. Bachouche, K. Ait-Mahiout, Existence of solutions for higher order \(\phi-\)Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- S. S. Dragomir, Several inequalities for an integral transform of positive operators in Hilbert spaces with applications , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy, On stability of nonlocal neutral stochastic integro differential equations with random impulses and Poisson jumps , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Paul W. Eloe, Jeffrey T. Neugebauer, Maximum, anti-maximum principles and monotone methods for boundary value problems for Riemann-Liouville fractional differential equations in neighborhoods of simple eigenvalues , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Amal Ghandouri, Hatem Mejjaoli, Slim Omri, On generalized Hardy spaces associated with singular partial differential operators , CUBO, A Mathematical Journal: Vol. 25 No. 2 (2023)
- Ganga Ram Gautam, Sandra Pinelas, Manoj Kumar, Namrata Arya, Jaimala Bishnoi, On the solution of \(\mathcal{T}-\)controllable abstract fractional differential equations with impulsive effects , CUBO, A Mathematical Journal: Vol. 25 No. 3 (2023)
- Branko Malešević, Dimitrije Jovanović, Frame’s Types of Inequalities and Stratification , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Vito Lampret, Double asymptotic inequalities for the generalized Wallis ratio , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
- Fatima Fennour, Soumia Saïdi, On a class of evolution problems driven by maximal monotone operators with integral perturbation , CUBO, A Mathematical Journal: Vol. 26 No. 1 (2024)
You may also start an advanced similarity search for this article.