Fundamentals of scattering theory and resonances in quantum mechanics
- 
							
								
							
								Peter D. Hislop
							
							
															
									
									
									hislop@ms.uky.edu
									
								
													
							
						 
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000300001Abstract
We present the basics of two-body quantum-mechanical scattering theory and the theory of quantum resonances. The wave operators and S-matrix are constructed for smooth, compactly-supported potential perturbations of the Laplacian. The meromorphic continuation of the cut-off resolvent is proved for the same family of Schrödinger operators. Quantum resonances are defined as the poles of the meromorphic continuation of the cut-off resolvent. These are shown to be the same as the poles of the meromorphically continued S-matrix. The basic problems of the existence of resonances and estimates on the resonance counting function are described and recent results are presented.
Keywords
Similar Articles
- Smaïl Djebali, Ouiza Saifi, Upper and lower solutions for φ−Laplacian third-order BVPs on the half-Line , CUBO, A Mathematical Journal: Vol. 16 No. 1 (2014): CUBO, A Mathematical Journal
 - Sébastien Breteaux, Higher order terms for the quantum evolution of a Wick observable within the Hepp method , CUBO, A Mathematical Journal: Vol. 14 No. 2 (2012): CUBO, A Mathematical Journal
 - Juan B. Gil, Structure of Resolvents of Elliptic Cone Differential Operators: A Brief Survey , CUBO, A Mathematical Journal: Vol. 11 No. 5 (2009): CUBO, A Mathematical Journal
 - Leigh C. Becker, Uniformly Continuous 𿹠Solutions of Volterra Equations and Global Asymptotic Stability , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
 - Tingxiu Wang, Some General Theorems on Uniform Boundedness for Functional Differential Equations , CUBO, A Mathematical Journal: Vol. 11 No. 3 (2009): CUBO, A Mathematical Journal
 - Ferenc Szidarovszky, Vernon L. Smith, Steven Rassenti, Cournot Models: Dynamics, Uncertainty and Learning , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
 - Tamar Kugler, Ferenc Szidarovszky, An Inter-Group Conflict and its Relation to Oligopoly Theory , CUBO, A Mathematical Journal: Vol. 11 No. 2 (2009): CUBO, A Mathematical Journal
 - D. Constales, R. De Almeida, R.S. Krausshar, A Generalization of Wiman and Valiron‘s theory to the Clifford analysis setting , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
 - Wolfgang Sproessig, Le Thu Hoai, On a new notion of holomorphy and its applications , CUBO, A Mathematical Journal: Vol. 11 No. 1 (2009): CUBO, A Mathematical Journal
 - Sehie Park, Remarks on KKM Maps and Fixed Point Theorems in Generalized Convex Spaces , CUBO, A Mathematical Journal: Vol. 10 No. 4 (2008): CUBO, A Mathematical Journal
 
<< < 15 16 17 18 19 20 21 22 23 24 25 26 > >>
You may also start an advanced similarity search for this article.
						










