Fundamentals of scattering theory and resonances in quantum mechanics
-
Peter D. Hislop
hislop@ms.uky.edu
Downloads
DOI:
https://doi.org/10.4067/S0719-06462012000300001Abstract
We present the basics of two-body quantum-mechanical scattering theory and the theory of quantum resonances. The wave operators and S-matrix are constructed for smooth, compactly-supported potential perturbations of the Laplacian. The meromorphic continuation of the cut-off resolvent is proved for the same family of Schrödinger operators. Quantum resonances are defined as the poles of the meromorphic continuation of the cut-off resolvent. These are shown to be the same as the poles of the meromorphically continued S-matrix. The basic problems of the existence of resonances and estimates on the resonance counting function are described and recent results are presented.
Keywords
Similar Articles
- Charalampos Tsitouras, Explicit Runge-Kutta methods for the numerical solution of initial value problems , CUBO, A Mathematical Journal: Vol. 4 No. 2 (2002): CUBO, Matemática Educacional
- Gastón E. Hernández, Behavior of multiple solutions for systems of semilinear elliptic equations , CUBO, A Mathematical Journal: No. 11 (1995): CUBO, Revista de Matemática
- Rafael del Rio, Asaf L. Franco, Jose A. Lara, An approach to F. Riesz representation Theorem , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Svetlin G. Georgiev, Khaled Zennir, New approach to prove the existence of classical solutions for a class of nonlinear parabolic equations , CUBO, A Mathematical Journal: Vol. 20 No. 2 (2018)
- Youssef N. Raffoul, Ernest Yankson, Positive periodic solutions of functional discrete systems with a parameter , CUBO, A Mathematical Journal: Vol. 21 No. 1 (2019)
- David Békollè, Khalil Ezzinbi, Samir Fatajou, Duplex Elvis Houpa Danga, Fritz Mbounja Béssémè, Convolutions in \((\mu,\nu)\)-pseudo-almost periodic and \((\mu,\nu)\)-pseudo-almost automorphic function spaces and applications to solve integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ioannis K. Argyros, Santhosh George, Extended domain for fifth convergence order schemes , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Ernest Yankson, Inequalities and sufficient conditions for exponential stability and instability for nonlinear Volterra difference equations with variable delay , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- Binayak S. Choudhury, Nikhilesh Metiya, Sunirmal Kundu, Existence, well-posedness of coupled fixed points and application to nonlinear integral equations , CUBO, A Mathematical Journal: Vol. 23 No. 1 (2021)
- K. Kalyani, N. Seshagiri Rao, Coincidence point results of nonlinear contractive mappings in partially ordered metric spaces , CUBO, A Mathematical Journal: Vol. 23 No. 2 (2021)
<< < 19 20 21 22 23 24 25 26 27 28 29 30 > >>
You may also start an advanced similarity search for this article.











