Homogeneous Besov spaces associated with the spherical mean operator
-
L.T. Rachdi
ahlemrouz@yahoo.fr
-
A. Rouz
ahlemrouz@yahoo.fr
Downloads
DOI:
https://doi.org/10.4067/S0719-06462011000200001Abstract
We define and study homogeneous Besov spaces associated with the spherical mean operator. We establish some results of completeness, continuous embeddings and density of subspaces. Next, we define a discrete equivalent norm on this space and we give other properties.
Keywords
Similar Articles
- Abolfazl Sadeghi, Ghasem Alizadeh Afrouzi, Maryam Mirzapour, Investigating the existence and multiplicity of solutions to \(\varphi(x)\)-Kirchhoff problem , CUBO, A Mathematical Journal: Vol. 26 No. 3 (2024)
- Wael Abdelhedi, Minkowski type inequalities for a generalized fractional integral , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Nemri Akram, Retraction Note: Heisenberg-type uncertainty principle for the second \(q\)-Bargmann transform on the unit disk , CUBO, A Mathematical Journal: Vol. 27 No. 1 (2025)
- Adrián Esparza-Amador, Parámetros especiales y deformaciones lineales de la familia \( (\wp(z))^2 + c \) , CUBO, A Mathematical Journal: In Press
You may also start an advanced similarity search for this article.
Downloads
Download data is not yet available.
Published
2011-06-01
How to Cite
[1]
L. Rachdi and A. Rouz, “Homogeneous Besov spaces associated with the spherical mean operator”, CUBO, vol. 13, no. 2, pp. 1–35, Jun. 2011.
Issue
Section
Articles